NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A282 955
LT

THESIS

Design and Implementation of a Prototype
Database for Part Information to Support the
MK92 Fire Control System Maintenance Advisor

Expert System ’

Tl

AULEL

&

by

Susan G. Talley

March, 1994

Thesis Advisor: Magdi Kamel
Approved for public release; distribution is unlimited.

DTI8 QUALITY INSPECTED 5

94-24737 oh
LT RSN o

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated 10 sverage 1 hour per response, including the tiroe for revicwing instruction, searching cxisting

date sources, gathering and mainmining the data neoded, and completing aad reviewing the collection of information. Send comments regarding this burden cstimate or

any other aspect of this collection of information, including suggestions for reducing this burden, 0 Washington Headquarniers Services, Directorste for Information

Operstions sad Reports, 1215 Jefferson Duvis Highway, Suite 1204, Arlington, VA 222024302, and 1o the Office of Masagemaent and Budget, Paperwork Roduction
i 1

ington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1994 March 30 Master’s Thesis

4. TITLE AND SUBTITLE DESIGN AND IMPLEMENTATION OF A 5. FUNDING NUMBERS

PROTOTYPE DATABASE FOR PART INFORMATION TO SUPPORT
THE MK92 FIRE CONTROL SYSTEM MAINTENANCE ADVISOR
EXPERT SYSTEM

6. AUTHOR(S) Susan G. Talley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRACT (maximum 200 words)

The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems found aboard U. S. Oliver
Hazard Perry class FFGs. This system, based on 1970's technology, frequently requires extensive
troubleshooting and supplemental shore-base support. A maintenance advisor expert system is being
developed to assist shipboard technicians in correctly diagnosing system faults, providing expert advice
concerning part replacement or further tests which should be made.

Additional information provided by the expert system includes documentation references, alternate
location for a part, and part numbers. Storing such information in a relational database that communicates
with the expert system would greatly improve its maintainability, modifiability, and accuracy.

This thesis addresses the design and implementation of a database to support the MK92 MOD 2 FCS
Maintenance Advisor Expert System using Microsoft AccessTM. This database includes such functions as
part and replacement informaﬁonzr%{atabase maintenance, and expert system support. Research revealed that
the currently supported Windows** interprogram communications mechanism of Dynamic Data Exchange
(DDE), as supported by the current versions of Access and Softsell AdeptTM, will not adequately support
the database to expert system interface requirements. Suggestions for alternative interface solutions are
provided in the thesis.

14. SUBIECT TERMS Database. Expert System. MK92 MOD 2 Fire Control System. 15. NUMBER OF
Database Design and Implementation. Database Application. PAGES 199
16. PRICE CODE
17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Approved for public refease; distribution is unlimited.
Design and Implementation of a Prototype Database

for Part Information to Support the
MKB92 Fire Control System Maintenance Advisor Expert System

by
Susan G. Talley
Lieutenant Commander, United States Navy
B.S.M.E., University of Washington

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author: /g’ Frs é@—g

Department of Systems ent

ABSTRACT

The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems
found aboard U. S. Oliver Hazard Perry class FFGs. This system, based on 1970's technology,
frequently requires extensive troubleshooting and supplemental shore-base support. A
maintenance advisor expert system is being developed to assist shipboard technicians in correctly
diagnosing system faults, providing expert advice concerning part replacement or further tests
which should be made.

Additional information provided by the expert system includes documentation references,
alternate location for a part, and part numbers. Storing such information in a relational database
that communicates with the expert system would greatly improve its maintainability,
modifiability, and accuracy.

This thesis addresses the design and implementation of a database to support the MK 92
MOD 2 FCS Maintenance Advisor Expert System using Microsoft Access [M. This database
includes such functions as part and replacement information, database maintenance, and expert
system support. Research revealed that the currently supported Windows interprogram
communications mechanism of Dynamic Data Exchange (DDE), as supported by the current
versions of Access and Softsell AdeptT™, will not adequately support the database to expert

system interface requirements. Suggestions for alternative interface solutions are provided in the

thesis. Accesion For

NTIS CRA& g
DTIC TAB
Unannounced 0
Justification

By
Distribution]

Availability Codes

) Avail and|or
Dist Special

gl |

iii

_

TABLE OF CONTENTS

INTRODUCTIONcooiimiinirenentenereestsaesssesessessesessessnsesascasssssssssnssensons 1
A, BACKGROUNDccooirtrtiiriirreietereeste e ees s sesste st s saessasenesenna 1
B. PURPOSE/OBIECTIVESoooooimiterereecteniereesteesaessseenesesssssesesnens 2
C. RESEARCHOQUESTIONS............coooteiirterierentrnnseesasessesaesessansnssanens 2
D. SCOPE AND LIMITATIONS OF THESISc.coooeevrrrcreererennenee 2
E. METHODOLOGYoootieiietieicreeeeeeeesetessesesessesessesessessssasasesesanes 3
THESIS ORGANIZATION...........cootriiriereieienennceaeteeasessessesnssessnsssanens 3
REQUIREMENTS ANALYSIS........ccooiiirninrenienenesestesessesestesessesseseseseons 5
A, DATAREQUIREMENTS.............ccoooonrretereeiereieesene e resvessesesansssenes 6
1. Entities and Attributescccccoeetreirientnreeeereeeee et 6
8. General Description................ccooueeuieirermeeeereeeeeeeesese e eneenee 6
b. Specific System Entities and Attributes...............ccccceeerenenne 6
2. Relationshipsc.ccoccoimiieiieeecectee et e bee e neenaas 7
a. General Description..............cccocovvieemvierierieieeieeneeceeeneseennes 7
b. Specific System Relationships..............cccccvvveeereerieneveenenee. 8
B. PROCESSREQUIREMENTS.............ccccerirerenreeenreierenereeresseansessns 9

1. Process DecOmPpOSItion................ccooeeeeneeeeveieeeeerceceeeeeeeeneeeseecenas 10

2. System Data Flow Diagrams (DFDS)ccccocoeimnmrerurcensencneennee 10

a2 ContextDiagram...............ccccoovieecreeernverarreseereeressseseeseessenns 11

b. SystemsDiagram..............ccocooviiiiiiiiniineeieeeeeeeeeeeeenens 11

(1) General Description................ccooeeveueereereveneerreeecnenenes 11

(2) Subsystem Descriptions.c.ccccoeerveveerrcrererernnes 12

c. Middle Level and Primitive Level DFDs....................cccccanene.. 12

(1) General Description..............cccooeuieveiereneevernenereenensnnes 12

iv

(2) Parts Information Subsystem.cccoieeniiiennncnne 13
(3) Data Store Maintenance Subsystem................cccceveenen. 14
(4) System Usage Subsystemc.cccevvriivennienicnncnnnnne. 17
C. OUTPUT OF REQUIREMENTS ANALYSISPHASEcoccceeeeee. 18
II. DATABASE SYSTEM DESIGN.........cccccocovtniiinicrneceetecseneteae st ecenene 19
A, DATADESIGNooootrerenerteeseeterseteeseeesenee et e nenseseesaeesaens 19
1. General Procedures............cooueueininccricncnincnicciesiinneesnceenraeseenne 19
2. Specific Database Systems Relations.............c.cccovcneiiienienenenncniennne 20
B. PROCESSDESIGNccococimimtiriitreeeteeesesseseeeeeteseeseseeessessensas 22
L MenuDesign ..ottt e n s 22
a. General Design Strategyccccoccevceieieneineniennenececnnerenas 22
b. Specific DeSign.........cc.ovimieieemrcrinrecnetnereeeeee e ceeneae 22
(1) UserMenu............coooeeneeeecrneecinciecsscencecesessesessens 23
(2) Administrator (Admin) Menuccccomrerrriecnenen. 26
2. General Form/Screen Use and Designcccocivmicecccnccncncnnn 28
3. ProcesSLOZIC.......cccooiimimrirciecieteerccaentreee st s enes 29
4. Specific System Reports and Associated LOgIiCcccccvuruvenanne. 29
8. UserForms..........ccooviiiiiicctintiirenceccnc s 29
(1) Browse Part Supply Information...............ccoeeevcecnneanne 29
(2) Update Part Supply Status............ccccceveevrinvrncnicnnennnnas 30
(3) Update Circuit Card Information (By Node#)................ 31
(4) Update Circuit Card Information (By UD#)................... 32
b. Administrator (Admin) Forms..............coccoeeeniniinnenencnnnescenee 33
(1) Common User and Admin Forms...............ccccevvervecncnnee. 33
v

(2) Unique Admin Forms - Update Circuit Information

BYNOAEH) ... 33
5. REPOIEDESIZN........oeooeeeeerieeeeeeeeeeeeereseseeseeseseseeesess e ssse e s 35
8. USeTRepOrts........cooiiiiic e 35
(1) Parts Not On Hand Reportocoooeveerererrerrersnnnns 35
(2) PartsOnOrder Reportccoccveureeueerrecrrcneenecennes 36
(3) Parts Under Stock Reportccccccoeirecrvcrvnnneeenceennens 36
b, AMENREPOMSoo.eooeeereeeeeneeeneeeeeeoeeeeeeeeesesseseeeesessesesenns 36
C. CONCLUSION OF DESIGNPHASEcccocovemiirinnreinenicceeeeecnnees 37
IV. DATABASE SYSTEM IMPLEMENTATIONcccccoiiii e 38
A, SOFTWARE SELECTIONcoooiiiereiiencerenceeneeseenireessesseessesanes 38
1. SORWAIE REQUITEMENLS.eeeoreeeeveeeeereeseeeesesesesessesesseessnenes 38
2. Available Software Programs: Advantages and Disadvantages 39
8. Microsoft AccessTMDBMScooooormreveeeenmrrrerissrrnreenens 39
b. ParadoxITM DBMS for Windowscccoveveemmmrcremmreeenneccens 39
c. Microsoft FoxProTM DBMS for Windows..................cco.c..... 40
3. DBMS Selected..............oreeeeeeee st ae s snes 40
B. MICROSOFT ACCESSTM DBMS OVERVIEW..............ooooeoorr 40
Lo Tables......ooceeeee et e ettt se et se et sane st ens 41
a. Table Creation and Definition...............c.ccocoevinenieninncrnnencanen. 41
b. Establishing Relationships Between Tables 43
c DataENRTY........coeieeeeeeecieceteeecrreeneeeareseseeeseresensnenennes 44
2. QUETIES..........oceeceeeee et ee et e s e e e e e n e e ne e e ntannns 44
a. Typesof Queries............ccominrnennircneeneeercneeeecstnaens 45
b. QueryDevelopment................cocvveeiiiiiiriereeceeseeeeseeene e 45
vi

3 FOMIS ...ttt ettt et st e e 46
a. Form Development Environmentccoconininninnnnne 46

b. MenuScreens...........cooviiiiiiinenrcni 48

c Input/Output Screens..............cocceevreeieriennieiccreieeee e 49

B, REPOMS.......oooeeoceeeeeeeeeeemeseesseeseesesssssassssssssssssssasssssssesssssnaes s 50
5. MACTOS ...ttt ces ettt s 51
8 MacroDesign........ccocooiiiiiniicccee s 51

b. Using Macros With FOrms............ccocoecevieniennicnneniiienieennee. 53

c¢. Linking Input and Output Forms.............cccccooviiiniinniinnniacne 53

6. Modules ... s 54
8. Useof AccessBasiCccccoevineninininicninniencnnicice 54

b. AccessBasicLanguage................cccccoecriiniiiniinninniiencene 55
DATA IMPLEMENTATIONccocetiitiniciineecrnesermsenieessssesessanees 56
PROCESS IMPLEMENTATION.ccocveireericreeeiennnesoieeeseesesenees 57
1. Process Development Example................cccoovimiininminiininnnninninnncns 57
a. Implementation of Specific Process Tasks.............cccecceeeneee. 57

b. ProcessExamplecocoiiniiiince e 57

2. Query Development and Examples...............ccococcvveninnnniiicnncnnnn 59
a. PartsOnOrder Query...........coociviieirnccnninrnicninnnencceene 59

b. SystemParts List QUeryccccccvmiivirecmnncmninnncicecnnennas 61

3. Memu/Screen/Form Development..............cccooemienniecniccniinnensaccnens 63
a Update Node-Replacement - Admin Form........................... 63

(1) Form: Replacement Info Sub(sub)form.......................... 63

(2) Form: Node-Replacement Info Subform........................ 64

(3) Form: Node-ReplacementInfo............cccocccet ernnnnnnneen. 65

b. InputNode#Form............cccooomiiiiniiioinininnienienicieeiecaene, 66
4. ReportDevelopment................cccooviiiiiiieiiiiiiee e 66
a PartsOnOrderReport............c..oociiiiiiiiiiiiiireee, 66
(1) Report: Parts On Order Subreport................ccoceeeeeee. 66
(2) Report:PartsOnOrder..............ccooovvrvemircceee 67
b. SystemParts List Reportc.cccovvvieereniricnrrenneeneaenenene. 68
(1) Report: System List Subreportcccocevvrnrennnnen. 68
(2) Report: SystemParts List.............c.cococivnveninreerennnee. 69
E. OUTPUT OF THE IMPLEMENTATIONPHASEcccccovevveuennnnee. 70
V. INTERFACE BETWEEN EXPERT AND DATABASE SYSTEMS 7
A. WINDOWS INTERPROGRAM COMMUNICATION............ccceereurmnnnen. 71
1. Dynamic Data Exchange (DDE)............cccccoceeninmninrnenennnncreenne 7
8. DDE N ACCESS.......cccocoemimrenirerretreereeeeeaesseteseesesnesaseesesesnens 72
b. DDEinAdept........cooovimeeeirreereneeeresaeestnseese e sene e 73
2. Object Linking and Embedding (OLE)..............cccccocevivviriernnrrcnnnnnne. 74
B. IMPLEMENTATION OF DDE INTERFACE BETWEEN ADEPT
AND ACCESS APPLICATIONScooconirerrreeneneeteeetreseeeseeseesenees 76
1. General Requirements...............cccoccomveeueneracrneereerronnenrereeesssseeseesaenss 76
2. Possible Solutions...............cccccooeviininminneeene e 76
a. Establishing Communications: First Approach....................... 77
(1) Methodology.......c.cocoeueeurennnireeeteee e 77
(2) Results..........oioiiicitricreeereeet ettt 77
b. Second Approach.............ocoriiiiiineeeee e 77
(1) Methodology.........ccoccovieuiieerecrerereee et 77
(2) Results..........ooiiiininrtreneene ettt 78

€. Third Approach...........cccccoovimmmmeececee e 78
(1) Methodology......ccccoovmuirerrrreireeeeeeeeee e, 78
(Q) ReSults.........o..ooooiiiiiieeeeeeeeeeeeee e 79
d. Fourth Approach............ccccoeoininiaiinnininiinnneneceseee e 80
(1) Methodology..........ccoovieaieereereeeneereeeeereveeene v, 80
(2) Phased Testing..........ccoevreveermmueeeecrereereeeeeeeeeeveinana 80
(3) Results..........c.occooeviiinirrcceecieereereerr e 81
2. Implementation SpPecifics.............ccocevuerevirnierrrnnerieerere e 82
a. Node Number from Adept to Accessccovveveeevervcennennn. 82
b. Part Information Records from Access.................ccocceeenne.n.... 83
(1) Part Information Query by Access.................ccovuennen... 83
(2) Information Request by Adept................ccocoeuveennnnn.e. 84
c. Display of Part Information to User..................cccoecveverreennnee. 84
C. FINAL RESULTScoooiiieerrcrcetenctreeanesasseesensesesesssnsasesssssasssessssenes 86
VL. LESSONS LEARNED AND CONCLUSIONS...........cccocoviemienmnrrnrrrreeereenes 89
A. SPONSOR FEEDBACK ABOUT PROTOTYPEcccoeeererenrennnne 89
1. Expert System Interface.............ccccccomnmmmnvinirienetececeeeeeeee e 89
a. Acknowledged Communication Problems................................ 89
b. Performance ISSUE..........c..cceemimuenrenricrenrenreetrreeeeeeeeereean s 89
2. Parts Supply Information Subsystem..............cccooeevrecveeveennineennnne.. 90
3. DB Maintenance Subsystem.............cccccceeruietrerieeeeeeeere e 90
4. Usage Subsystem.............ccccoveerieinirncnnicieennenneserne e e e neas 90
5. Administrator and User Interfacec.ccccccevevmvirecrevereerrereenenne. 90
B. DIRECTION OF FOLLOW-ON WORKccccceetvrntenmrerrenerereeneenens 91
1. Expert System - Database Interface................cccccoovreeeveriecrnrurrennnnne. 91
ix

2. Database Application Functionalityccceccoevimiiiiiiiiinirinenne 92
3. Database Application Environmentc.cccoieiiinmninniincenennnn. 92
4. Documentationc.c.ccoevueriiieeiienieiitirienieree e 92
C. LESSONSLEARNEDcccocoiimimiienieeeneeeeiestestaessaese et s seeseesans 92
1. Database Selection.............c.ccoieiiiininiiiiiececeen 92
2. Application Development..............ccoooiiiiinininiiiee e 93
D. CONCLUSIONccoceeerrercnmerriniententseeseeneesesseteseesesesseenesseeseesessensens 93
APPENDIX A - ENTITIES, ATTRIBUTES, AND ENTITY-RELATIONSHIP
DIAGRAM ...ttt et se s tse et ee et as st s et et st be it e esensnen 94
A. ENTITY DEFINITIONS AND ATTRIBUTEScccoocvnvniiininene 94
B. ATTRIBUTE DEFINITIONS............coooerreinretnentcntenereseesseseeeese e 95
C. ENTITY-RELATIONSHIP (E-R) DIAGRAMcccoceoimmmmmrncneeninncnnens 97
APPENDIX B - DECOMPOSITION AND DATA FLOW DIAGRAMS 98
APPENDIX C - MENU HIERARCHY AND SCREENScocooeiuinmieneeirceneninne 112
A MENUHIERARCHYcccoimimirieienrneensnesessessnansessessassensssssseasssses 112
B. MENUSCREENS...........oiireieeeentreerentestssssssseastsseesessessesassenes 114
APPENDIX D - PROCESS LOGIC, SYSTEM FORMS, AND SYSTEM REPORTS 121
A. PROCESSLOGIC......................... resrene b ettt r e n e s e st e e et e ennes 121
1. UserProcedures...........ccooivieencrvencericcrcrreeneencentneceaesreeeeeerssenans 121
2. Administrator Procedurescoooieieniiinnicenniennenenceseeene 129
3. SystemFUnNCHONS.........ccccoomiiiaiiiniirereeeerrcerte et esn e ee e esnes e 137
B. SYSTEMFORMSooioiiiiintnimnreeteeseessestrrtstesessenesaeseasncsesseneens 138
C. SYSTEMREPORTS.........oooireeetetneteneretestsesasteseaes e aeeaesranenneen 145
APPENDIX E - IMPLEMENTATION OF PROCESS LOGICcccocvvvriveennn, 149

A. STANDARD METHODS OF PROCESS LOGIC IMPLEMENTATION. 149

B. APPLICATION OBJECTS..ccooiiiiiirieeeeeereecereeee e seeees 152
1. APPLICATION TABLES ANDFIELDSccooviirrineienanenen. 152
2. APPLICATION QUERIESccocooririreereeteeeneeeee e 152
3. APPLICATIONREPORTS.............ccocoiiriries e, 153
4. APPLICATION FORMS: CONTROLS, PROCESSES, AND
PROPERTIES.ccoootititrieininieieei e et e e vt eveess bt ess e s esnans 154
5. MACROS AND ARGUMENTS..........ccooooeeimrerriereierentrereesseanns 160
6. APPLICATION ACCESS BASICMODULEScccccccovevennne. 164
APPENDIX F - DDE DOCUMENTATIONcooiiiiieieieeeeee e 172
A. ACCESS BASIC LANGUAGE ELEMENTSFORDDE.......................... 172
B. ADEPTFUNCTIONSFORDDE..............cccoovmrmimeeeereee et 173
C. ADEPT AND ACCESS APPLICATION INTERFACE PROCESSES...... 174
1 Adept Expert System Interface Node and Scripts...............cccooceeneee 174
a. Interface Node............ccooovueoininiiininieiecceccceer e 174
b. Interface Node Scripts.............cccovvvevernernrcncrereeceserreeecennenns 175
c. Adept Display of Part Information...............c.ccceecveeueevvennnen. 179
2. Database Application Procedures and Macros.................c..ccuvnn..... 179
LIST OF REFERENCESccooritieneinieisestnetnaeesestssesassessssessesaessessssassssnens 183
BIBLIOGRAPHYoootiiieiieieteetetresreniete s e s ss st s st s sessssese s e s sassasanseseans 184
INITIAL DISTRIBUTION LIST ...ttt eaere st e e ae e aenes 185
xi

L INTRODUCTION

A. BACKGROUND

The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems
found aboard U. S. Oliver Hazard Perry class FFGs and some U. S. Coast Guard and
Australian vessels. Based on 1970's technology, the system requires a great deal of effort
to correctly identify components causing system faults. Shipboard technicians spend
valuable man hours and often replace good components, resulting in significant costs
and/or extended system down time. In addition, shipboard technicians may not have the
necessary expertise, and technical assist visits from shore-based technicians are often
required to get the system back into operation. (Smith, 1993, p. 1)

A maintenance advisor expert system is being developed to enhance fault diagnosis
and calibration of the MK92 MOD 2 FCS. Its purpose is to reduce the amount of time
and money spent on system diagnostics and to reduce overall system down time. More
significant, this expert system has the potential for reducing the dependence on shore-
based systems support, which is not likely to be available during at-sea operations or war
when it is critical for the MK92 FCS to be fully operational.

There are several potential uses of a database in conjunction with the expert system.
A database is required to manage information concerning replacement part information,
locations of identical parts within the system, and documentation references which are
part of the expert system conclusions or recommendations. Since this information is used
in more than one place within the expert system, storing it within a database will make it
more easy to modify than if it were hard wired within the expert system itself. A second
use of a database is to provide a supply support and inventory function to the technicians,

to facilitate procurement of parts when they are required. Another possible benefit of
using a database is using it to store and report usage/historical information, with respect
to the use of the expert system, for future analysis and planning.

B. PURPOSE/OBJECTIVES

The purpose of this thesis is to design and implement a prototype database system
which will work in conjunction with the MK92 FCS Maintenance Advisor Expert System
(MAES). This database will primarily act as a repository for detailed information on
replacement parts which will be available to the user, through the expert system. An easy
to use interface will be provided to the users which allows them to maintain database
information. In addition, the database will perform a supply support function for the

technicians.

C. RESEARCH QUESTIONS
The following are the research questions that this thesis is addressing:
1. Does the use of off-the-shelf databases with expert systems add to the
functionality of expert systems?
2. Does the use of databases with expert systems facilitate the maintenance
of the currently developed expert systems?
3. What is the viability of the integration of databases and expert systems in

the Windows environment?

D. SCOPE AND LIMITATIONS OF THESIS

This thesis defines, designs and implements primary functionality of a relational
database system for use in conjunction with the MK92 Fire Control System MAES.
Methods for integration of the database and expert system were explored and tested.

E. METHODOLOGY

This thesis uses the database life cycle and prototyping approach to develop the
database application. This methodology of software development combines formal
requirements and design techniques with one which utilizes a series of adaptive
prototypes to test feasibility and to use for evolutionary requirements analysis.

The initial design and prototype focuses on the requirements generated by the
interaction between the database and the expert system. When necessary, database
complexity was limited to keep communications between the database and expert system

as simple as possible.

F. THESIS ORGANIZATION

This thesis is organized in the following manner:

Chapter II describes the system requirements (Requirements Analysis Phase). Data
and process requirements are discussed and represented using an Entity-Relationship
(E-R) diagram and a leveled set of Data Flow Diagrams (DFD).

Chapter IlI covers how the requirements are converted into a database design
(Design Phase). Data and process design are discussed, including the design of menus,
forms, and reports.

Chapter IV discusses the implementation of the database (Implementation Phase).
In this phase, data and processes are discussed in terms of implementation within a
specific database software program. This chapter covers the consfruction of a Microsoft
AccessTM application from a generic design.

Chapter V discusses the integration of the database and expert system. Dynamic
data exchange (DDE) is the primary method covered, with other possible mechanisms
briefly discussed.

Chapter VI presents lessons learned from the system development and future work

requirements.

_

IL REQUIREMENTS ANALYSIS

Requirements analysis consists of determining two types of system requirements:
data requirements and process requirements. Determining data requirements specifies
what data needs to be stored in the system, while process requirements specify the
processes which operate on the data in order to provide the required database
functionality. In the requirements analysis phase of software design, initial design
requirements were obtained by analyzing the functionality of the expert system and
gathering the requirements and capabilities requested by the program manager, the Naval
Surface Warfare Center (NSWC), Port Hueneme Detachment (PHD).

Prior to beginning the database design, its requirements had been discussed by the
MK92 FCS MAES project team during several meetings, with the primary requirement
determined to be presenting the user particular amplifying information concerning the
expert system result nodes. NSWC PHD provided this information in the form of a list for
the calibration portion of the expert system. Data requirements were developed primarily
from this list and the knowledge representation diagrams.

In addition, discussion with NSWC personnel and the project advisors included
interest in the possibility of storing data concerning the usage of the expert system to
provide justification for the development of the system. Initial requirements were based
on the possible information this sort of system would store, along with likely input and
output processes, but the detailed design and the implementation of these requirements
will not be covered in this thesis. Follow-on work may contain this functionality if it
remains a system requirement.

Requirements for a supply function were based on personal experience with
technicians and their needs for quick information for ordering parts. This system will be
developed further based examination of the prototype by NSWC in follow-on work.

Some type of interface for maintenance is required of all databases. While much of
the maintenance is performed by an administrator, it may also be practical for data to be
maintained by the users, as well. If the users are required to maintain data, the design of a
database maintenance interface is considerably more important. This interface must
provide the capability to maintain the data items subject to change and at the same time

present the inadvertent corruption of the database, to the greatest extent possible.

A. DATA REQUIREMENTS
Data requirements may be stated in the form of an entity-relationship (E-R) model,
which consists of entities, attributes, and relationships. The entity-relationship (E-R)
diagram is used to visually describe the entities and the relationships between them, and is
provided in Appendix A, Section C. Data requirements are described below.
1. KEntities and Attributes
a. General Description
The basic object in an E-R model is an entity, which is defined as
"something important to the users in the context of the system that is to be built"
(Kroenke, 1992, p. 98). Each entity has specific properties called attributes, which are
characteristics that describe it. Each instance of an entity is a unique occurrence of that
entity, which can be specified by a particular attribute or identifier.
b. Specific System Entities and Attributes
One of the primary entities for this system is the NODE, which is the
result node within the expert system requiring information on part replacement from the
database. Attributes of a NODE are a Node-number and a Module-reference, with Node-
number being the identifier, or unique attribute.
The second primary entity is REPLACEMENT. This entity describes a
particular part and its location within the system, which may be replaced by the technician

troubleshooting faults within the MK92 FCS. Attributes of a REPLACEMENT are a
Circuit-card-location-reference, Alternate-location, and Notes. The Circuit-card-location-
reference, commonly called the UD number within the system technical manuals as well as
the expert system, is the identifier for the Replacement entity.

The next primary entity is PART, which describes a particular electronic
part in the system, another item of interest to the technician. Attributes of PART are the
Part-number, Stock-number, Price, Part-allowance, Parts-on-hand, and Parts-on-Order.
Part-number is the identifier for the PART entity.

The fourth entity is NODE-REPL, which provides a link between the
NODE and the REPLACEMENT entities. The identifier is a composite attribute
consisting of Part-number (from PART) and Circuit-card-location-reference (UD#) (from
REPLACEMENT). There is also one attribute, circuit-reference, which is the document
reference for a particular combination of NODE and REPLACEMENT identifiers.

The last entity is USAGE, which would store a record of the actual
usage of the expert system to allow management to analyze its effectiveness and perform
more accurate cost/benefit analysis. The initial definition of the attributes of USAGE are
the Usage-number, Usage-date, Part-replaced, and Usage-notes. Usage-number is the
identifier for the USAGE entity.

Other entities may be added to the system as development progresses.
Appendix A, Sections A-B contains a listing of all system entities, their attributes, and
their definitions.

2. Relationships
a. General Description

The association between two entities is called a relationship. A rela-

tionship can be characterized on several dimensions. The first dimension is the degree of

the relationship. Most relationships involve only two entities and are called binary
relationships.

The second dimension is cardinality, which specifies how many instances
of each entity may be associated with the other entity in the relationship. There are three
main types of binary relationships, 1:1 (one-to-one), 1:N (one-to-many), and N:M (many-
to-many).

A third dimension is participation. The participation constraint tells
whether the relationship between one entity and another is required (mandatory) or not
required (optional). If every member of an entity set must be related to another entity,
then the participation constraint is mandatory, or total. If members of an entity can exist
without being related to another entity, then the participation constraint is optional, or
partial. (Elmsari and Navathe, pp. 50-51)

b. Specific System Relationships

The relationship between the NODE entity and the REPLACEMENT
entity is a N:M relationship, that is, a NODE may use more than one REPLACEMENT
and likewise, a REPLACEMENT may be used by more than one NODE. This
relationship contains the attribute circuit-reference, as the documentation reference is
associated with neither Node nor Replacement, but the combination of the two. Since this
relationship cannot be implemented directly, it has instead, been broken into two 1:N
relationships, as discussed below.

The relationship between the NODE entity and the NODE-REPL entity
is a 1:N relationship, that is, a NODE instance may be associated with more than one
instance of NODE-REPL, but each instance of NODE-REPL may be associated with only
one instance of NODE. Similarly, the relationship between REPLACEMENT entity and
the NODE-REPL entity is a 1:N relationship. A REPLACEMENT instance may be

associated with several instances of NODE-REPL, but each instance of NODE-REPL may
be associated with only one instance of NODE. The participation constraints are such that
there is a mandatory requirement for each NODE-REPL instance to be associated with a
NODE and a REPLACEMENT instance. On the other hand, NODE and
REPLACEMENT instances can exist without an associated NODE-REPL instance,
therefore those constraints are optional.

The relationship between the PART entity and the REPLACEMENT
entity is a 1:N relationship, since a PART instance may be associated with more than one
REPLACEMENT instance, but each REPLACEMENT instance is associated with only
one PART instance. The participation constraint is optional both ways, that is a
REPLACEMENT instance may have a related PART instance and a PART instance may
exist without being related to a REPLACEMENT instance.

B. PROCESS REQUIREMENTS

Process requirements are the second component of the overall system requirement.
Processes can be modeled in terms of how the data flows through the system and the
processing that is performed on the data. Data flow models are used to depict the
processes and how they interact with one another, and how the data flows between
processes. (Whitten, et. al., 1989, p.275)

Process modeling begins with factoring a system into subsystems and functions,
using a top-down functional decomposition diagram. Logical data flow diagrams (DFDs)
are then constructed, corresponding to each level in the decomposition diagram. Middle
level DFDs show details about key subsystems, and the primitive level diagrams show
explicit data flows and processes for a single functional piece of the system. (Whitten, et.
al., 1989, pp. 284-321)

1. Process Decomposition

The decomposition of the process requirements for this system is shown in the
decomposition diagrams provided in Appendix B. This system is broken into three main
subsystems: the Part Information subsystem, the Data Store Maintenance subsystem,
and the System Usage subsystem (Figure B-1).

These subsystems have been further broken down into subprocesses, which
are activities corresponding to various system transactions, data maintenance functions,
and reports. Further decomposition is shown in Figures B-2 through B-4. Thereis a
fourth component of the database, which is associated with the interface between the
database and the expert system. This component is discussed in detail in Chapter V.

2, System Data Flow Diagrams (DFDs)

Logical data flow diagrams (DFDs) are used to show detailed processing and
associated data flows. Higher level DFDs correspond to the higher levels in the
decomposition diagram, and give a more general illustration of what the subsystems do.
The lower ievel DFDs show the detailed processing requirements of the primitive level
functions. (Whitten, et. al., 1989, p. 289)

There are three main components of a data flow diagram: the external entities
to the system, the logical data flows, and the logical processes. The external entities
define the system boundaries, are the agents with which the system interacts, and include
the end-users of the system. These end-users may be either sources of data or recipients
of system information, or both. (Whitten, et. al., 1989, pp. 277-8)

In this system, the two major entities are 1) the Technician (or Expert System
User), and 2) the System Administrator (System Admin). Two separate entities are used
because, while the majority of the system processes are of possible use to both entities,
there are separate processes which are designed for use by personnel maintaining the

10

expert system and/or the database system (system administration). Changes to the expert
systetn may require related changes to the database, where the user may be required to
perform some simple database maintenance tasks if information in the data stores changes.
A simplified interface is provided for the primary end-user (technician).

a. Context Diagram

The highest level DFD is the context diagram. This diagram "defines
the scope and boundary for the system and project, (Whitten, et. al., 1989, p. 289)" and in
this case is shown in Figure B-5. In this diagram, the only process shown is the root
process. In addition, this diagram shows the external entities and the major data flows.
Since details are not shown, the flows in this diagram represent a collection (or
consolidation) of flows between the system and the entities.

System maintenance information flows from the System Administrator
to the system, and parts information flows from the system to the System Administrator.
User information (including maintenance information) flows from the Technician to the
system and parts/supply information flows from the system to the Technician.

b. System Diagram

(1) General Description. The system diagram is an explosion of the
context diagram into a more detailed picture of the system, and is the second level DFD.
This diagram shows the major subsystems and how they interact with one another. This
system diagram is shown in Figure P-6, and shows the three primary subsystems (1.0 Part
Info, 2.0 Data Store Maintenance, 3.0 System Usage) which are the second level of the
decomposition diagram. In addition to showing data flows between the systems and the
external entities, this and lower level DFDs also show communications between the
processes and the data stores. Multiple data stores and entities of the same name are used

only to keep the diagram readable; symbols using the same name represent the same entity

11

or data store. In some cases, a single "data model” is used to represent all systems data
stores for simplification. (Whitten, et. al., 1989, pp. 291-294)

In a few instances, the data flows shown on this diagram still
represent composite flows, which are exploded further in lower level diagrams. In
addition, most communication between the system and the user is two-way, yet may be
ouiy shown in one direction. To simplify DFDs, only the net data flow is shown; for
example, in an inquiry, the result is shown but not the request.

(2) Subsystem Descriptions. The Part Info Subsystem receives part
supply input and provides (local) part information to the Technician and provides
(system) part information to the System Administrator.! This subsystem uses the Part and
the Replacement data stores.

The Data Store Maintenance Subsystem receives (system)
maintenance information from the System Administrator and (local) maintenance
information from the Technician. This subsystem maintains the Replacement, Node, Part,
and Node-Repl data stores.

The System Usage Subsystem receives usage information from
and provides usage reports to the Technician. This data is stored in the Usage data store.

c¢. Middle Level and Primitive Level DFDs

(1) General Description. Each of the processes on the systems
diagram is further exploded to show more of the subsystem details. In the case of this
system there is only one level DFD between the system level DFD and the lowest or
primitive level DFD. Each diagram will show progressively more detail concerning flows

! The term "local® is used with respect to the data flows to generally denote
information going between processes and the Technician entity, and the term "system" is
likewise used to denote information between processes and the System Admin entity.

12

until reaching the primitive level. At the primitive level, all data flows are shown and
composite flows are broken down into their individual components. The letter P is added
to the identification number for primitive processes to show that this process does not
explode to another DFD.

(2) Parts Information Subsystem. The Parts Information Subsystem
is exploded from the systems diagram into two levels (Figures B-7 and B-8). There are
three processes in the first level, two of which are primitive level processes. These
correspond to the decomposition diagram for this subsystem.

(a) Browse Part Info process (1.1P). This allows the
technician to look at part information for a particular part. Part Supply Details are
retrieved from the Part data store, and then provided to the Technician, by selecting a
particular part-number.

(b) Update Supply Status process (1.2P). This allows the
technician to change supply status information for a particular part. Changes are provided
to the puocess, which then updates details in the Part data store.

(c) Report Part Info process (1.3). This allows the technician
and system administrator to retrieve Part Reports and System Part Reports, respectively.
This process uses details from the Part and Replacement data stores. This process is
broken down into the following primitive processes (Figure 8):

(1) Not On Hand Report process (1.3.1P). This
provides a report to the Technician, of parts which are not in stock, using the part-number
element from the Part data store and the circuit-card-location-ref (UD#) element from the
Replacement data store. This report provides all UD#s which are related to a particular

part.

13

(ii) Parts On Order Report process (1.3.2P). This
provides a Parts On Order Report to the Technician, using the part-number, and the parts-
on-order element from the Part data store, and the circuit-card-location-ref (UD#) element
from the Replacement data store.

(iii) Parts Under Stock Report process (1.3.3P). This
provides a list of all parts which are under allowance level to the Technician, using details
from the Part data store.

(iv) System Parts List process (1.3.4P). This provides
a list of all parts in the system to the System Administrator, using the part-number element
from the Part data store, and the circuit-card-location-ref (UD#) element from the
Replacement data store. All UD#s corresponding to a particular part are listed.

(3} Data Store Maintenance Subsystem. The Data Store Maintenance
Subsystem is exploded from the systems diagram into two levels (Figures 9-13). There
are three processes in the first level (Figure 9), which all explode into lower level
processgs.

(a) Node Maintenance process (2.1). This allows the System

Administrator and the Technician to perform maintenance on the Node data store, as well
as related data stores (Replacement and Node-Repl), by selecting a particular Node#.
This process explodes into the following primitive processes (Figure B-10):

(i) Update Node/UD Info by Node process (2.1.1P).
This process allows the System Administrator and Technician to select a particular node
and update all elements in the Node, Node-Repl, and Replacement data stores except
node-number.

14

(ii) Change Node# process (2.1.2P). This process
allows the System Administrator to change the Node number of a particular node. Node-
number from both the Node and the Node-Repl data stores are changed.

(i) Add Node process (2.1.3P). This process allows
the System Administrator to add a new node to the system. Other related information,
such as associated UD#s, pertaining to new nodes must be added by other processes.

(iv) Delete Node process (2.1.4P). This process allows
the System Administrator to delete a node from the system, using node-number to delete
the related instances in the Node and Node-Repl data stores.

(v) Add UD to Node (By Noae) process (2.1.5P). This
process allows the System Administrator and Technician to add UD#s related to a
particular node-number by adding Node-Kepl data store instances to :he system. This
process checks to see if the UD# exists. If it does not, a message will request the user to
add the UD# before creating an instance in the Node-Repl data store.

(vi) Delete UD from Node (By Node) process (2.1.6P).
This process allows the System Administrator and Technician to delete UD#s related to a
particular node-number by deleting instances in the Node-Repl data store from the system.

(®) Replacement (UD) Maintenance process (2.2). This
process allows the System Administrator and Technician to perform maintenance on the
Replacement data store, and related data stores (Part and Node-Repl), by selecting a
particular UD#. This process explodes into the following primitive processes (Figure
B-11):

() Change Replacement Info By UD# process
(2.2.1P). This process allows the System Administrator and the Technician to change

information related to a particular circuit-card-location-ref (UD#) in the Replacement and

15

Part data stores. If part-number is changed, the corresponding Part data store instance
will also have its part-number attribute changed.

(ii) Change UD# process (2.2.2P). This process allows
the System Administrator and the Technician to change circuit-card-location-ref (UD#)
for a particular instance in the Replacement data store and related instances in the Node-
Repl data stores.

(iii) Add UD to Nodes (By UD) process (2.2.3P). This
process would allow the System Administrator to add Replacement data store and corre-
sponding Nodé-Repl data store instances for a single UD#. This would be an altemative
to adding a UD# to a number of nodes one node at a time. For Replacement data store
instances not related to an existing Part-number, a new instance in the Part data store
would be created.

(iv) Delete UD from Nodes (By UD) process (2.2.4P).
This process is similar to that of 2.2.3P, but deletes rather than adds UD#s related to
Nodes. This is accomplished by deleting Node-Rep! instances.

(c) Part Maintenance process (2.3). This process allows the
System Administrator and Technician to perform maintenance on the Part data store, and
related data stores (Replacement and Node-Repl), by selecting a particular Part#. This
process explodes into the following primitive level processes (Figure B-12):

(1) Change Part Info process (2.3.1P). This process
allows the System Administrator and Technician to change information relating to a
particular part in the Part data store, by part-number.

(ii) Change Part# process (2.3.2P). This process
allows the System Administrator and Technician to change the part-number of a particular
part, changing related part-numbers in both the Part and Replacement data stores.

16

(iii) Delete Parts & UDs process (2.3.3P). This process
allows the System Administrator to delete Part instances from the Part data store.
However it checks to see if corresponding instances with the same part-number exist in
the Replacement data store. If they do exist, the user will be asked to delete related
Replacement instances first.

(iv) Add Parts process (2.3.4P). This process allows
the System Administrator and Technician to add instances to the Part data store.

(4) System Usage Subsystem. The System Usage Subsystem is
exploded from the systems diagram into two levels (Figures B-13 and B-14). There are
two processes in the first level, one of which is a primitive level process.

(a) Enter Usage process (3.1P). This process allows the
Technician to enter system usage data. The identifier attribute will be a usage-number,
which will document consecutive entries. Other items of interest will be usage-date, part-
replaced (Part#), and notes (UD#, etc.). These attributes are stored in the Usage data
store.

() Report Usage Data process (3.2). This process explodes
into the following primitive level processes (Figure B-14):

(i) Report Usage process (3.2.1P). This process will
retrieve usage details from the Usage data store in a formatted report.

(ii) Annual Report process (3.2.2P). This process will
retrieve usage details for the current year from the Usage data store, in a formatted report,

and (as required) archive data to clear the Usage data store.

17

C. OUTPUT OF REQUIREMENTS ANALYSIS PHASE

The statement of requirements is the output of the requirements phase. This
statement includes the description of the data and process requirements, the entity-
relationship diagram, and a leveled set of data flow diagrams. The next chapter discusses
the next stage of database development, the design phase.

18

m—

II. DATABASE SYSTEM DESIGN
The design phase consists of two parts, data design and process design. In data
design, also known as logical database design, data requirements specified in the

requirements phase are converted into a relational design which may be implemented later
in any specific database software. In process design, also known as application design,
update, display, and control mechanisms such as forms, menus, and reports, for the
application are developed.

A. DATA DESIGN
1. General Procedures

During data design, entities, and the relationships between entities, are
described in terms of relational database designs using the relational model. This is
accomplished by first defining a relation for each entity. These relations have the same
name as the entity and the attributes of the relation are the properties of the entity. The
key attribute is the same as the identifier (or unique) property of an entity. (Kroenke,
1992, p. 206)

After initial data design, relations are checked to ensure they are free from
modification anotalies. If not, normalization is used to eliminate these anomalies which
might result in an improperly designed database. It should be noted, however, that
normalization often adds additional relations by breaking entities into smaller units. The
best database design is a combination of minimizing modification anomalies while at the
same time preventing the design from becoming too contrived or complex. (Kroenke,
1992, pp. 207-208)

Once a relation is constructed for each entity, with all of the entity's
properties, the different kinds of relationships in the E-R model are also represented. The
representation of one-to-one (1:1) and one-to-many (1:N) relationships is straightforward.

19

Each entity is represented as a relation and then the key attribute of one of the relations is
also stored in the other. In the case of the 1:N relationship, the key attribute of the parent
(on the "one" side) is stored in the relation representing the child (on the "many"” side).
The key attribute stored in the relation, whether 1:1 or 1:N, is called the foreign key since
it technically does not belong to that relation. (Kroenke, 1992, pp. 211-214)

To represent many-to-many relationships a new relation is created, called an
intersection relation. This intersection relation represents the relationship itself, and the
key is the combination of the keys of both of its parent relations. (Kroenke, 1992, p.215-
217)

2. Specific Database Systems Relations

The entity-relationship diagram shown in Figure A-1, Appendix A is
converted into a relational model using the principles described above. This model is
shown in Figure 1, below. This system is primarily designed with the expert system
interface in mind, so all relations and attributes have been designed to simplify the
resulting output. The transformation of the entities in this system are described in detail
below.

The NODE entity is represented as the relation NODE, with the attributes of
Node# and Module Ref. The key attribute is Node#. '

The REPLACEMENT entity is represented as the relation
REPLACEMENT, with the attributes UD#, Alt Loc, and Notes. UD# is the key
attribute. This relation is the child of the PART relation, therefore the attribute Part# is
also included in the REPLACEMENT relation as a foreign key.

The PART entity is represented as the relation PART, with the attributes
Part#, NSN, Price, Allowance, Parts On Hand, and Parts on Order. Pari# is the key
attribute of this relation.

20

The NODE-REPL entity is represented as the relation NODE-REPL, with
the attributes Node#, UD#, and Circuit Ref. The combination of Node# and UD# is the
key attribute of this relation. This relation is an intersection relation between the two
parent relations, NODE and REPLACEMENT.

For this thesis, the USAGE entity is not represented in the relational model, as
discussed in Chapter II.

NODE
Node# Module Ref

NODE-REPL

REPLACEMENT
UD# | Pant# tk Alt Loc Notes

PART
Pant# NSN | Price | Allowance | Parts On Hand Parts On Order

Figure 1- Relation Diagram

21

B. PROCESS DESIGN
Process design involves the design of menus, screens, forms, reports and the logic
associated with these items. In most databases, the primary concem is the output
requirements.
1. Menu Design
a. General Design Strategy

There are a number of common strategies for user interface design. The
most popular is the use of menu selections where various options are presented to the end-
user. The user then can easily selects an appropriate action from those presented on the
menu. In some cases, the menuing technique is driven by the database software being
used, because the mechanisms for one or the other type are more easily implemented. One
common technique available in current database software is the use of pull-down menus,
where the user highlights the chosen action using arrow keys, a mouse, or initial letters of
the action. If submenus exist, they descend from the pull-down menu choice, presenting
more choices to the user. This allows the user to traverse through a hierarchical structure,
selecting one of a collection of functions. (Whitten, et. al., 1989, p.585)

Many Windows-based database software programs take an object-
oriented design approach, where command buttons invoke macros which perform certain
tasks. With event-driven programs, instead of presenting the user a strict hierarchical
structure, it may be possible to provide more convenient and natural ways for users to do
things. (Jones, 1994, pp. 31-32)

b. Specific Design

This system menu is primarily hierarchical, but some functions will be
combined where it makes sense, and will not be presented exactly as found in the
decomposition diagrams. The menu hierarchy is provided in Appendix C, Section A. All

functions and menu selections are provided via command buttons, which allow the user to
either select a button using the Windows pointing device (mouse or trackball) or by typing
in the highlighted letter (underlined) on the "button". In addition to the selections shown
in the menu hierarchy listing, each menu level contains one or more buttons which return
the user to the previous menu and/or the main menu (as appropriate). The menus are
discussed in detail below.

There are two subsystems, one for administrators and one for users
(technicians). The User menu is separated from the Administrator menu, even though
many of the functions are the same, so that Database Administrators can have access to a
more complete set of data maintenance functions than Users would require. The first
menu screen presented to Administrators is the Opening screen, which is shown in Figure
C-1, Appendix C. Database administrators (DBAs) have the option of accessing either the
User or Administrator version of the system.

(1) User Menu. The main User Menu screen allows the user to select
from four command button choices, three which invoke submenus (the Part Information
submemu, the Usage History submenu, and the DB Maintenance submenu), and one to exit
the system. (Figure C-2) This is the first menu screen presented to users accessing the
system.

(a) Part Information Submenu. The Part Information submenu
presents four choices to the user: two which invoke part information functions (Browse
Part Supply Info and Update Part Supply Status), one which invokes the Part Reports
Submenu, and one which returns the user to the main (User) menu. (Figure C-3)

23

(i) Browse Part Supply Information. This function
allows the user to browse supply information concerning a specific part selected from a list
of parts. This provides a basic display mechanism for the PART entity. Screens used for
this display are discussed in Section 2, below.

(ii) Update Part Supply Information. This function
provides the capability for the user to update the supply information for a specific part.
This provides the update mechanism for the PART entity. Forms used for this function
are discussed in Section 2, below.

(iii) Part Reports Submenu. The Part Reports submenu
presents five choices to the user: three which generate reports for the user, one which
returns the user to the Previous menu (Part Information), and one which returns the user
to the main menu (User). (Figure C-4) Reports are discussed in detail in Section 3,
below.

{A} Parts Not On Hand Report. This option
generates a report on parts which are not on hand.

{B} Parts On Order Report. This option generates
a report on parts which are on order.

{C} Parts Under Stock Report. This option
generates a report on parts which are under allowance level.

{D} Previous Menu. This option returns the user
to the previous menu screen (Parts Information).

{E} Return to Main User Menu. This option
returns the user to the top level user menu.

(iv) Return to Main User Menu. When selected, this
option returns the user to the top level user (Main - User) menu.

24

(b) Usage Submenu. The Usage submenu presents four
choices to the user' one to enter usage information, two for generating reports, and one to
return to the main (User) menu. (Figure C-5) As discussed in Chapter II, this submenu is
not implemented in this thesis.

(c) DB Maintenance Submenu. This submenu presents four
choices to the user: one to update circuit card information, one to add UD#s to/delete
UD##s from Nodes, one to update Part Information, and one to return to the main (User)
menu. (Figure C-6)

(@) Update Circuit Card Information. This option
allows the user to update the NODE, NODE-REPL, and REPLACEMENT entities. The
function provides a submenu to the user, allowing selection between updating by Node#
or by UD#. This menu screen is shown in Figure C-7.

{A} Update By Node#. This option allows the
user to update the NODE, NODE-REPL and/or REPLACEMENT entities for the
information related to a particular Node#. Screens used for these updates are discussed in
Section 2, below.

{B} Update By UD#. This option allows the
user to update the REPLACEMENT and NODE-REPL entities for the information related
to a particular UD#. Screens used for these updates are discussed in Section 2, below.

(ii) Add UDs to/Delete Nodes from Nodes. This option
allows the user to update the NODE and NODE-REPL entities. This function is not
implemented.

@iii) Update Part Information. This option allows the
user to update the PART and REPLACEMENT entities. This function is not
implemented.

25

(iv) Return to Main User Menu. When selected, this
function returns the user to the top level user menu.

(d) Exit. The Exit function closes the database application
after saving any changes.

(2) Administrator (Admin) Menu. The main Admin menu allows the
same three submenu choices as the User menu (Part Information. Usage History, and DB
Maintenance), plus Exit. This menu will be used by the DBA, and is shown in Figure C-8.

(a) Part Information Submenu. This menu presents the same
choices as in the User Subsystem, which is discussed above, and is shown in Figure C-9.

(i) Browse Part Supply Information. This is the same
function as in the User Subsystem, and it uses the same screens.

(ii)) Update Part Supply Information. This is the same
function as in the User Subsystem, and it uses the same screens.

(iii) Part Reports Submenu. The Part Reports submenu
in this subsystem presents three choices to the DBA: one which generates a report for the
DBA, one which returns the DBA to the Previous menu (Part Information - Admin), and
one which returns the DBA to the main menu (Admin). The report is discussed in detail in
Section 3, below. (Figure C-10)

{A} System Parts List. This option generates a
listing of all parts in the expert system, for use by the DBA.

{B} Previous Menu. This option returns the user
to the previous menu screen (Parts Information - Admin).

{C} Return to Main Admin Menu. When
selected, this option returns the DBA to the top level Admin menu.

26

(iv) Return to Main Admin Menu. When selected, this
option returns the DBA to the top level Admin menu.

(b) Usage Submenu. This submenu is not covered in this
thesis.

(c) DB Maintenance Submenu. This submenu provides the
same maintenance functions as in the User Subsystem, plus an additional function to
maintain the NODE entity (and related entities) within the system. (Figure C-11)

(@) Update Circuit Card Information. This option
provides enhanced capabilities to the DBA for maintenance of the NODE, NODE-REPL,
and REPLACEMENT entities, in addition to those provided to the user. The function
provides a submenu to the user, allowing an update by either Node# or by UD#. This
menu screen is shown in Figure C-12.

{A} Update by Node#. This option provides the
same basic capabilities as that of the user menu plus it allows the DBA to change Node#
within the NODE and related NODE-REPL entities. Screens used by this function are
discussed in Section 2, below.

{B} Update by UD#. This option provides the
same capabilities as that on the User menu to update the NODE, NODE-REPL, and
NODE-REPL entities.

(i) Add UDs to/Delete UDs from Nodes. This option is
the same as on the User menu.

(i) Update Part Information. This option is the same as

on the User menu.

27

(iv) Add Nodes to/ Delete Nodes from System. This
option allows the DBA to add instances to the NODE entity or delete instances from the
NODE entity. This function would be used in the case of a adding , deleting, or modifying
nodes in the expert system.

(v) Return to Main Admin Menu. When selected, this
option returns the DBA to the top level Admin meuu.

(d) Exit. This option returns the DBA to the Opening menu,
instead of exiting the program.
2. General Form/Screen Use and Design

Forms are used for both data entry and display of information. Since this
database does not model any existing paper forms, as is the case with many database
systems, forms were designed from scratch with simplicity and consistency in mind. Some
forms were designed with a form generator while others were put together using other
design tools. The form generator and form design tools will be discussed in more detail in
Chapter IV.

Forms can be designed based on either entities or a combination of entities.
There are two types of forms in this database application, forms based on a single table,
and forms based on more than one table. Multi-table forms can be used to display entities
with 1:1 relationships, or ertities with 1:N relationships. Some forms are based on a table
and some forms are based on the results of a query. Examples of these forms are
discussed below.

As with menus, command buttons can be used on forms to execute additional
functions or tasks. Procedures or tasks executed in this way allow one or more tasks to
be grouped together in a single cohesive presentation, with different options available to

the user at his or her selection. Other tasks included in forms are updates to related

28

_—-

information, viewing related information, and cancellation of changes. The application
forms will be discussed below, along with functions and procedures. Specific form design
is discussed in Section 4, below.

3. Process Logic

Process logic describes the logic of the different modules of the system. There
are two types of process modules used in the system: procedures and functions. Both
procedures and “unctions are designed with software reuse in mind, that is, in many cases
functions and orc< ...« "es contain actions which may be used by more than one process.

Examples of actions which may by either functions or procedures, or both,
include: present a form to a user, read input, search for a particular instance or set of
instances of an entity or entities, display instances to the user, cancel actions, update
entities, delete entities, and others.

Process logic is discussed with respect to specific system forms and reports,
and is presented in detail in Appendix D, Section A.

4. Specific System Forms and Associated Logic
a. User Forms.
(1) Browse Part Supply Information. When invoked from the Part
Information submenu, this function involves the use of a set of two forms.
The input form (Browse Part) is shown in Figure D-1,
Appendix D. This form is based on a query of the PART entity, which is invoked by the
user selecting a Part# from a scroll list of all the system part numbers. Information about
that part is displayed by selecting or "pushing" the Locate command button. A Cancel
function button is also available. When a Part# and the Locate button are selected, the

associated procedure (see Appendix D, section A, Ul.1L) is executed. The Cancel

29

button executes procedure Ul.1C, returning the user to the previous screen, Part
Information Menu.

The output form (Part Supply Info Browse) is based on the same
query and presents the results of the procedure (Figure D-2). This form has one command
button, Return, which takes the user back to the previous (input) screen using procedure
Ul.1L-R.

(2) Update Part Supply Status. When invoked from the Part
Information submenu, this procedure (U1.2) involves the use of a set of two primary
forms and three secondary forms.

The input form (Update Part) is shown in Figure D-3. This form
requires input from the user in the form of Part#. By selecting the Locate command
button, the user invokes a process (Procedure U1.2L) which locates a particular instance
of the PART entity and displays it to the user. If there is no matching part, a message is
provided to the user. A Cancel function button is also available, which executes
procedure U1.2C, returning the user to the previous menu form (Part Information Menu).

The output form (Part Supply Info) is based on the PART entity
and presents the results of the procedure (Figure D-4). This form has five command
buttons: Return, which returns the user back to the Part Information menu using
procedure Ul.2L-R; More, which saves the existing information, including any updates,
and takes the user back to the previous (input) screen using procedure Ul.2L-M; Issue,
which invokes the process which displays the Issue Parts form (U1.2L-I); Order, which
invokes the process which displays the Parts Ordered form (U1.2L-O); and Receive,
which invokes the process which displays the Parts Received form (U1.2L-R).

30

One secondary form associated with this procedure, Issue Parts, is
shown in Figure D-5. This form requires the user to input the amount of parts issued.

The user may either Cancel this action (U1.2L-IC), or Update the number of parts on
hand (U1.2L-IU), and then return to the previous form (Part Supply Info).

The next secondary form, Parts Ordered, is shown in Figure D-6.
This form requires the user to input the amount of parts ordered. The user may either
Cancel this action (U1.2L-OC), or Update the number of parts on order (U1.2L-OU),
and return to the previous form (Part Supply Info).

The third secondary form, Parts Received, is shown in Figure D-7.
This form requires the user to input the amount of parts received. The user may either
Cancel this action (U1.2L-RC), or Update the number of parts on order and parts on
hand (U1.2L-RU), and return to the previous form (Part Supply Info).

(3) Update Circuit Card Information (By Node#). When invoked
from the Part Information submenu using the Select Change submenu, this function
involves the use of a set of two forms and two subforms.

The input form (Input Node#) is shown in Figure D-8. This form
requires the users to input a Node#. By selecting the Locate command button, the user
invokes a process (Procedure U2.1.1L) which locates a particular NODE instance, if it
exists, and displays that NODE and its related NODE-REPL and REPLACEMENT
information. If there is no matching NODE instance, a message is provided to the user. A
Cancel function button is also available, which executes procedure U2.1.1C.

The output form (Update Node-Replacement - User) is based on
the NODE entity and is displayed in Figure D-9. A subform appears within this form,
which displays the related NODE-REPLACEMENT entity information. Also a sub(sub)
form within the subform displays the REPLACEMENT entity information. In this

31

manner, it is possible to display a NODE and all REPLACEMENT instances associated
with that Node#, by using instances in the NODE-REPL entity to link these two other
entities. This form has three command buttons: Clear, which clears any changes, before
they are committed using procedure U2.1.1L-C; Exit, which returns the user back to
Select Change menu using procedure U2.1.1L-E; More, which saves the existing
information, including any updates, and takes the user back to the previous (input) screen
using procedure U2.1.1L-M. The subform has two command buttons: Fwd, which
displays the next NODE-REPL instance associated with that Node# using procedure
U2.1.1L-F; and Back (Procedure U2.1.1L-B), which displays the previous instance of
NODE-REPL associated with that Node#.

(4) Update Circuit Card Information (By UD#). When invoked from
the Part Information submenu using the Select Change submenu, this function involves the
use of a set of two forms. This function also permits another function to be invoked,
Update UD# , using a third form.

The input form (Input UD¥#) is shown in Figure D-10. This form
requires the user to input a UD#. By selecting the Locate command button, the user
invokes a process (Procedure U2.2.1L) which locates a matching UD# in the system, if it
exists, and displays that particular Replacement instance to the user. If there is no
matching Replacement instance, a message is provided to the user. A Cancel function
button is also available, which executes procedure U2.2.1C.

The output form (Update UD# - Replacement) is shown in Figure
D-11, and is based on the REPLACEMENT entity. This form has four command buttons:
Update UD#, which invokes the process U2.2.1L-U, and is discussed in more detail
below; Clear, which clears any changes made, before any updates are made, using

procedure U2.2.1L-C; Exit, which returns the user back to the Select Change menu using

32

T

procedure U2.2.1L-E; More, which saves the existing information, including any updates,
and takes the user back to the previous (input) screen using procedure U2.2.1L-M.

The Update UD# process invokes the third form, Change UD#
(Figure D-12). The subform has two command buttons: Cancel, which cancels the
Update UD# process using process U2.2.1L-UC; and Change UD#, which invokes a

process (U2.2.1L-UD) which accepts a new UD# and presents a message giving the user
an opportunity to confirm the change by selecting Yes or No. If the user selects "No" the
process is cancelled and he/she is returned to the Change UD# form. If the user selects
"Yes", this activates the function "Update Related UD" (Appendix D, Section A-3). This
function first finds all of the instances of the REPLACEMENT entity with the old UD#
and updates them with the new UD#, then it finds all related (with the same UD# as the
old UD#) instances of the NODE-REPL entity and updates them with the new UD#.
Upon completion of this function, the user is returned to the Update UD# - Replacement
form.

b. Administrator (Admin) Forms.

(1) Common User and Admin Forms. Most of the Admin Forms are
the same as the User forms and perform the same function. The primary differesice in the
processes invoking the forms or processes attached to command buttons is the menu
screens from which the user starts or to which the user returns to after the completion of
the process(es). Process logic is contained in Appendix D, Section A-2.

(2) Unique Admin Form: Update Circuit Information (By Node#)
When invoked from the Part Information submenu using the Select Change submenu, this

function involves the use of a set of three forms and two subforms.

33

The primary input form (Input Node#) is shown in Figure D-8,
and is the same as the User form of the same name. This form requires the user to input a
Node# By selecting the Locate command button, the user invokes a process (Procedure
A2.1.1L) which locates a particular Node# in the NODE entity, if it exists, and displays
that NODE and its related NODE-REPL and REPLACEMENT instances information. If
there is no matching NODE instance, a message is provided to the user. A Cancel
function button is also available, which executes procedure A2.1.1C.

The output form (Update Node-Replacement - Admin) is based
on the NODE entity and is displayed in Figure D-13. A subform within this form, displays
related NODE-REPL entity information. A sub(sub) form within the subform is used to
display related REPLACEMENT entity information. In this manner, it is possible to
display a NODE and all REPLACEMENT instances associated with that Node#, by using
instances in the NODE-REPL entity to link these two entities. This form has four
command buttons: Clear, which clears any changes made, before they are committed,
using procedure A2.1.1L-C; Exit, which returns the user back to Select Change menu
using procedure A2.1.1L-E; More, which saves the existing information, including any
updates, and takes the user back to the previous (input) screen using procedure A2.1.1L-
M; and Update Node#, which invokes procedure A2.1.1L-N, that changes the current
Node# to another one as specified by the user. This last process is discussed in more
detail below. The subform has two command buttons: Fwd, which displays the next
NODE-REPL instance associated with that Node# using procedure A2.1.1L-F; and Back
(Procedure A2.1.1L-B), which displays the previous instance of NODE-REPL associated
with that Node#.

The Update Node# process (A2.1.1L-N) invokes the third form,
Change Node# (Figure D-14). This form has two command buttons: Cancel, which

34

cancels the Update Node# process using process A2.2.1L-NC; and Change Node#, which
invokes a process (A2.2.1L-NA) which accepts a new Node# and presents a message
giving the user an opportunity to confirm the change by selecting Yes or No. If the user
selects "No" the process is cancelled and the user is returned to the Change Node# form.
If the user selects "Yes", this activates the function "Update Related Node" (Appendix D,
Section A-3). First, this function finds all of the instances of the NODE entity with the old
Node# and updates them with the new Node#, then it finds all related (with the same
Node# as the old Node#) instances of the NODE-REPL entity and updates them with the
new Node#. Upon completion of this process, the user is returned to the Update Node-
Replacement -Admin form.
5. Report Design and System Reports

There are currently four reports in this system, three for the User Subsystem,
and one for the Administrator (Admin) Subsystem. Examples of these reports are
provided in Appendix D, Section C, and are discussed below. Process logic for the
processes involved in these reports is detailed in Appendix D, Section A.

a. User Reports

(1) Parts Not On Hand Report. This report is invoked from the

Report Parts Info Menu - User, using the Report Parts Not On Hand procedure (U1.3.1).
A sample report is shown in Figure D-15. This report is based on the results of a search
for all instances of the PART entity, where the number of Parts On Hand equals zero. A
list of the Part#s for instances matching the search criteria is then used to obtain a sub-
listing of all UD#s related to the resultant Part#s from the REPLACEMENT entitiy. Part#
and all associated UD#s, for parts which are not in stock, are reported to the user.

35

(2) Parts On Order Report. This report is invoked from the Report
Part Info Menu - User, using the Report Parts On Order procedure (U1.3.2), and is shown
in Figure D-16. This report is based on the results of a search for all instances of the
PART entity, such that the number of Parts On Order is greater than zero. A list of the
Part#s for instances matching the search criteria is then used to obtain a sub-listing of all
UD##s related to the resultant Part#s from the REPLACEMENT entity. Part#, Number of
Parts On Order, and all associated UD#s, for parts which are on order, are reported to the
user.

(3) Parts Under Stock Report. This report is invoked from the
Report Parts Info Menu - User, using the Report Parts Under Stock procedure (U1.3.3).
A sample of the report is shown in Figure D-17. This report is based on the results of a
search for all instances of the PART entity, such that the number of Parts On Hand is less
than the parts Allowance. A list of the Parti#s for instances matching the search criteria is
displayed along with Number Parts On Hand, Number Parts On Order, and the Part
Allowance.

b. Admin Reports

There is currently one Admin report, which is invoked from the Report
Parts Info Menu - Admin, using the System Parts List procedure (A1.3.1). Part of this
listing is shown in Figure D-18. This report is based on the results of a search for all
instances of the PART entity which had a Part#. A list of the Part#s for instances
matching the search criteria is then used to obtain a sub-listing of all UD#s related to the
resultant Part#s from the REPLACEMENT entity . Part# and all associated UD#s for
parts in the system are reported to the administrator.

36

C. OUTPUT OF DESIGN PHASE

The output of the design phase is a document that describes the structure of the
database. This structure of the database includes a description of the relations, their
attributes, and the relationships between relations, and the related processes. The
description of the process design includes the menus, forms, screens, and process logic.
The next chapter discusses the next stage of database development, the implementation
phase.

37

IV. DATABASE SYSTEM IMPLEMENTATION

Similar to the requirements and design phases, the implementation phase consists of
two parts, data implementation and process implementation. In data implementation the
relational model is converted into the database structure of a specific DBMS. Process
implementation involves the construction of forms, reports, menus, procedures, and
functions developed during the design phase. During this phase a specific DBMS software
is used, and implementation of the system becomes dependent on the functionality and
design of this software and its language, features, limitations, and structures. This chapter
describes system implementation by discussing software selection, the DBMS used, data

implementation, and process implementation.

A. SOFTWARE SELECTION
1. Software Requirements

This thesis is not only interested in developing a standalone database
application, but also a database application that integrates with an expert system
application. Therefore, a primary requirement for DBMS software to be used for this
thesis is that it be compatible with Softsell Adept TM expert system shell used to develop
the MK92 FCS Maintenance Advisor being developed at the school. Since Adept is a
Microsoft Windows-based program, the selected DBMS must have the ability to pass data
or information using Windows mechanisms.

Another consideration was whether the software supported the development
of a "run-time" version for the user, so that the full database environment is not required
to be included with the operational version. This requirement saves both money and
storage space, which is generally scarce on laptop computers.

38

A third consideration was, of course, the functionality and ease of use of both

the development environment and the user environment.
2. Available Software Programs: Advantages and Disadvantages

With above selection criteria in mind, the initial software selection was made
early in 1993. At that time the major Windows database programs had been just
introduced and experience with their use was rather limited.

a Microsoft AccessTM DBMS

Microsoft Access DBMS had the advantage that it is a Microsoft

product. Since Windows is also a Microsoft product, conceivably Access would have a
better implementation of one of the primary Windows communications mechanisms of
interest, Dynamic Data Exchange. The application development environment was
considered to be the easiest, but was less capable in developing and running queries than
Paradox. (Coffee, 1993, pp. 270-297) One feature of interest was the availability of an
application development kit, which could produce run-time executable programs for
distribution to the end-users.

b. Borland ParadoxT™ DBMS for Windows

~ The Paradox DBMS was also well reviewed, and in some respects

considered to be better than Access. Paradox has a report generator which was
considered to be the best of these three databases, but required the use of its programming
language for most tasks unlike the Access’ macro facility which simplifies development
(Coffee, 1993, pp. 270-297). Paradox has a programming language which is considered
to be a superior, object-oriented, C-like language (Coffee, 1993, p. 285). A run-time
engine or application development version was not advertised, but likely to be announced
in the future since one is available for the Paradox version for DOS. The major drawback
with Paradox was that communications between two different programs is difficult

39

enough, let alone if the database and expert system interface were to involve three vendors
(Windows, Paradox, and Adept).

¢. Microsoft FaxProTM DBMS for Windows

FoxPro DBMS is considered to be a superior development environment,
but challenging for a programmer not already experienced in programming in an XBase
programming language, such as dBASE uses (Campbell and Hudnall, 1993, p. 25). With
this in mind, there seemed to be too much of a learning curve to overcome if FoxPro were
to be used. DDE capabilities were also unknown, although Microsoft was a major player
in converting FoxPro, from being initially a program for the Macintosh, to versions for
Windows and DOS. It is therefore likely that FoxPro's DDE environment is as capable as
that of Access.
3. DBMS Selected

Base on an analysis of application requirements and the characteristics of
initial DBMS selection as well as literature reviews, Access was selected as the
development environment for this thesis. FoxPro was initially considered after being
recommended by NSWC sponsors, but was eliminated from further consideration after it
was discovered, as mentioned above, that it has a steep learning curve.

B. MICROSOFT ACCESSTM DBMS OVERVIEW

Microsoft Access DBMS provides a comprehensive development environment for
developing database applications. It consists of six main components: tables, forms,
queries, reports, macros, and modules. These components are invoked from the Access
main database window, shown in Figure 2, to develop all database objects (tables, forms,
reports, etc.) for an application. In addition, an extensive help system is available, which

includes information based on a search, examples, and "Cue Cards." Cue cards are an on-

40

_

line form of tutorial which steps the user through the creation/design of a particular object.
The following sections discuss each component of Access in some detail..

B Databasc: 2MK32DB

B 1

B NEWTX

B NODE
NODE-HELP
NODE-REPL

Figure 2 - Database Window

1. Tables
a. Table Creation and Definition

Tables are created by selecting the "Table" and "New" buttons in the
database window. This brings up the Table environment or "Design View." In this view
the fields are named, and the type and length of data that will be stored in each field as
well as any rules which govern data entry into the table are specified. Table properties
such as a description, a key, and indexes may also be entered in this view or at a later time.
These items will be discussed in more detail below. The design environment for a table is
shown below, in Figure 3. (Jones, 1994, pp. 39-40)

There are eight types of fields including text, memo, number, data/time,

currency, counter, yes/no, and OLE object. Memo fields allow a great deal of flexibility in

41

the amount of data it can hold, and are useful for storage of a large amount of text since
up to 32,000 characters can be stored in a memo field for each record. Descriptions for
each field can also be added. (Jones, pp. 40-42)

Once the field type has been defined, there are a number of field
properties applicable to each type of field. For example, the properties for a text field are
the field size, the caption, the default value (if any), the validation rule (if any), validation
text (if any), and whether the field will be indexed. There is a default size for text fields,
which may be ch»aged in the properties box. There are other properties associated with
the other data types. "Validation rules” are a feature which lets the developer control how
data is accepted into the fields of a table, so program code is not needed for validating
data on data-entry forms. Other properties may be added or changed, as appropriate,
including field sizes. (Jones, 1994, pp. 46-49)

In most tables, there will be a key field or fields, and this relates directly
to the key attribute(s) in the relation design. The key field (or combination of fields) is
assigned by highlighting the particular field or fields and then selecting the "Key"
command button on the toolbar memu, a feature which can be seen in Figure 3. An index
can be added to most fields of a table (all fields except fields of data type memo, yes/no,
and OLE object). Indexes are used to speed the performance of searches on a given field.
(Jones, 1994, p. 60)

42

——

Microsoft Access
le dit ow ndow Help

atabase: 2MKI2D8

Tabie: REPLACEMENT
i

Lyt

Teble Propenies
3

Figure 3 - Table Design Environment Example

b. Establishing Relationships Between Tables
] Once the tables in a database havc oeen created, relationships between
these tables can be established. This is performed by selecting "Edit/Relationships" from
the menu and then filling in the options in the Relationship dialog box, which is shown in
Figure 4.

3> ==

Prinary Koy et Setece Macring Fee:

maerer0 T —

Ua-wm
[_1&] [Quew | | Ssgesc| [Cowe |

) Prmary key of Enprayees ole !mumamm

Figure 4 - The Relationships Dialog Box
Defining relationships between tables allows for the automatic
definition of the related field during the design of queries, form/subform combinations,
and report/subreport combinations. The effect of these defined relationships will be

43

discussed later within the context of the different types of objects in later sections of this
chapter. This will also provide enforcement of referential integrity between the data in
related tables, if desired. If the referential integrity option is turned on, then Access will
maintain referential integrity during operations which involve the editing and deleting of
records. This means that records cannot be added to 1; related table if there is no
corresponding entry for the matching field in the primary table, and similarly, a record
from the primary table cannot be deleted if that will leave related records in the other table
as "orphans.” (Jones, 1994, p. 62) This feature may be desirable during the use of a
database, especially if specific program code is not used to perform the same functions.

To define a relationship, the primary table is selected first. Then the
type of relationship is defined as either "One," which defines a one-to-one relationship, or
“Many," which defines a one-to-many relationship. Next, the related table is selected in
that list box. The matching field used to link the tables is then selected. Finally, if the
"Enforce Referential Integrity" feature is desired, that check box is selected.

c¢. Data Entry

Data entry may be performed by using a form or directly in the Table
"Datasheet" view. If a Table is selected and the "Open” command button is used, it will
open that table's datasheet view showing all existing records. This view allows the entry
of new records and existing records can be changed. Ifit is not necessary to view existing
records, but merely add new ones, once a table is opened, “Records/Data Entry” may be
selected from the menu to facilitate the entry of new data records.

2. Queries
Queries are one of the most important components of a database system,

because they provide the capability to display and/or report data to the user. Queries are

used to find data within the Tables of a database. Once a query is created, it becomes the
basis for forms, reports, graphs, and/or other queries.
a. Types of Queries

There are several types of queries: select queries, which retrieve data to
be viewed or updated; crosstab queries, which present data in a spreadsheet format; and
action queries, which can be used to update existing tables, delete records, and make a
new table from other tables. (Microsoft Corporation, Access User's Guide, 1992)

b. Query Development

Access has a feature called graphical query by example (QBE), which
allows queries to be created quickly by selecting the tables to be used and then selecting
the desired fields of those tables. Tables can also be joined in several ways, such as with
an outer join, so that records from one table which do not match records from the second
table can still be displayed to the user. Criteria for particular fields can be specified, so
that records which have data matching the criteria will be selected.

To design a new query, the "Query" button on the Access database
menu is selected followed by the "New" button. At this time, an interface is opened
which allows the user to select the object(s) on which the query will operate on (Tables or
Queries) in the "Add Table" window. When objects are added, they appear in the query
window, such as the table PART, shown in Figure 5 below. After all of the desired
objects are added to the QBE window, the relationships between them are established by
connecting the related fields of the two tables. If the relzitionship is obvious, i.e. the two
fields have the same name or relationships have been established earlier, relationships in
the QBE environment appear automatically. If relationships are not previously
established, they can be created or "drawn" by clicking on the first related field and
holding the left mouse button down and dragging until it touches the related field on the

45

second table. These relationships are shown in the diagrams of the completed queries.
(Figures 12 and 13, below)

-
Select Query: Queryl

Add Table

Figure 5 - Adding a Table to a Query

After drawing relationships, particular fields of interest are selected from
the tables and placed into the "Field" box of the QBE grid. The easiest way to perform
this task is to use the mouse and click on the particular field in a table and "drag" it into
the "Field" box of the grid. The developer can choose whether or not to display a field;
whether to use an ascending, or descending, or no order; and on what criteria the selection
will be based, if any.

3. Forms
Menus, screens, and forms are all developed in Access as Forms, with the
term screen and form being generally synonymous.
a. Form Development Environment
Forms can be created using an easy to use generator called a "Form

Wizard" or from scratch. The generator requires the programmer to select a Table or

46

Query on which the form will be based, and then it proceeds to ask what type of form,
which fields to include, and what "look” the form will have from several options
presented. The basic form is designed by the "wizard." Subsequently, the developer could
make changes to that form using other form development tools, which are described
below.

The form design "toolbox" is used to add a number of different kinds of
controls to particular form. These controls include text boxes, labels, command buttons,
check boxes, list boxes, subreport/subforms, lines, option buttons, and toggle buttons.
Text boxes are used for input or output of information and are either bound to a field, so
they display the information from that field, or unbound. Unbound text boxes are often
used for user input of information. Command buttons are used to "activate” processes
relating to a form. List boxes are related to a particular list of choices, usually the
particular data items stored in a particular field of a table. The choices in a list box, or
combo box, can also be enumerated lists which are not from another object.

Various properties, such as control name, control source, status bar
text, data format, default values, and validation rules can be set for each control. For text
boxes, there are other properties such as whether the box can shrink or grow, when it will
be displayed, etc.

A palette feature can be used to quickly apply colors to text,
backgrounds, and borders within forms. The palette can also be used to change the "look”
of controls giving them a sunken or raised 3-D effect.

The toolbox, palette, and properties box are all windows which may be
activated by command buttons on the screen toolbar. The toolbar can also be used to
toggle between the design view and the form view of the form. The size of the form
"window" can easily be resized by dragging the borders in or out using a mouse.

47

In addition, once a form or menu is created, it is simple to copy it to
another form name, and change the control sources and properties for a particular control.
This "copy and paste" capability provides consistency within various levels of menus and
across an application.

The form design environment is shown in Figure 6.

Figure 6 - Form Design Environment

b. Menu Screens

The design of menu forms involves three tasks: the design of the form
itself, the design of a mechanism to perform process actions, and a method for connecting
the form and the actions mechanism. Menu forms are designed using blank forms, and can
not be designed using the form wizard since menu forms are not bound to an object.
Labels can be added for different headings, and command buttons with labels can be added
for invoking various processes.

Macros are used as the mechanism by which process actions are
performed by a form (both menu and other types of forms). Forms are invoked by

macros, and use macros to invoke related processes. Macros can be invoked upon the

48

opening of a form, by a control such as a command button, or upon the exiting from a
form. The use of macros with forms will be described further in Section 5.
¢. Input/Output Screens

Input and output forms are more complex than menu forms. Where
menu forms included only one action type of control, the command button, input/output
screens usually include additional controls. Most output forms are bound to a source such
as a table or query. If the data to be displayed comes from a single table, the form is
bound to that table, and each text box or list box on the form is bound to a field in that
table. If the data in a single form comes from more than one table, but does not involve a
1:M relationship on the form itself, a query can be performed on those tables, and the
form's object source can be the query. As with a single table, one or more fields in the
query may be bound to a particular display control.

It is possible to display related information in a form/subform
combination. Generally the subform is created first, or created at the same time with the
Form Wizard. When the subform is created first, the main form is created, and then the
toolbox is used to add the subform control. Forms are linked via MASTER and CHILD
entries in the subform control properties listing, using the common field in the related
tables. These MASTER/CHILD fields relate directly to the Key/Foreign key relationship
in the underlying relations. Neither of these fields have to be displayed on either form, but
must exist in the sources on which the forms are based. An example of the creation of the
subform is contained in Section D, below.

Forms which accept input from the user may be bound to a particular
source or may be unbound. An unbound form uses text boxes and/or possibly other
controls, to accept user input. This form will then use a process invoked by a command

button to connect the information in the text box to another object. An example of this

49

will be provided in Section D. Display or output forms become input forms when they
accept input in the form of updates from the user.
4. Reports

Reports can be created from scratch or using an easy to use generator called a
"Report Wizard". As with the Form Wizard, the report generator requires the
programmer to select a Table or Query on which the report will be based. The generator
then asks questions such as what type of report, which fields to include, and what "look"
the users want for their report from several options presented. Once the basic report is
designed by the generator, it is easy to make changes after afterwards. The palette and
toolbox can be used to add various design elements to reports.

Reports can be one of several types: Single column, with all fields lined up
vertically; Groups/Totals, with grourings up to ten levels; or Mailing Labels. Text boxes
can be added to reports that display data based on a calculation such as the sum (total) of
the values. Multi-table reports can be created using a report/sub-report combination, with
multiple instances in the table on which the sub-report is based related to a particular
instance of the table on which the master (or main) report is based. Default reports come
with controls which provide the current date each time the report is printed or viewed, and
page numbers, but these features can be modified or deleted as desired.

The design of reports involves both the design of the report itself and the
design of the mechanism used to invoke the report from the menu. In this application,
many of the reports are report/subreport combinations, which means that subreports were
designed first. When the main report is designed, a subreport control is added to the
report. The properties of this control include the source of the control and which fields
are used to link the report and subreport in a MASTER/CHILD relationship like that used

50

—-—-f

with multi-table forms. In general, the linking field is only displayed on one of the forms,
but need not be displayed on either.
Examples of the implementation of several reports are provided Section D.

below. The report design environment is shown in Figure 7.

Figure 7 - Report Design Environment

S. Macros
a Macro Design
Macros contain one or more instructions which are grouped together to
perform various procedures or actions. These instructions or actions model the process
logic in the design of a database application. In Access, Macros are used to replace
program code in most instances, thus simplifying application development. An example of
a macro design environment is provided in Figure 8.

51

Figure 8 - Macro Design Environment
Macros can be used to perform routine tasks, such as the following (Jones,
1994, p.178):
1. Automatically opening or displaying frequently used objects, such as tables, forms, and

reports.
2. Validating data entered into a form with greater flexibility than is provided within the

validation mechanism in a Table.
3. Automating transfer of data (import or export) between an Access application and
other software packages.

Macros consist of a series of "actions” and each action has one or more
argument which applies to that action. Macro actions include the following: Close
(window), GoToControl, FindRecord, Maximize, OpenForm, MsgBox, OpenQuery,
OpenReport, Quit, RunCode, RunMacro, SetWarnings, and others. These actions will not
be discussed, except in the context of specific application requirements later in this
chapter. Each one of these actions has its own set of arguments, for example the
arguments for the OpenForm action are the name of the form which is to be opened and
several other items which apply.

The macro design environment allows the user to select an action from a list

of permitted actions, and then the appropriate arguments are displayed in the window

52

below. The mechanism for entry of arguments is also shown in Figure 7. Macros can be
designed as a single set of actions, or as macro groups. Storing related macros together as
a group simplifies the design environment for the programmer.

b. Using Macros With Forms

On forms, command buttons are used to invoke these macros, through
the use of the "On Push" property of the command buttons. The macro name is entered
into this property, and when that button is "pushed” or selected, the macro actions are
invoked in sequence.

Menu forms are displayed using the macro "OpenForm" command,
which will display a particular form to the user. Some menus invoke submenus, and in this
case, a macro is used by the menu to open the submenu form. Generally, each menu
command button is linked to a macro which opens a form of one type or another. What is
not apparent to the user, is that there are other actions which are performed by the same
macros, either before or after the form is displayed. An example of this might be a macro
action which turns "Echo” off, so that the user does not see messages which Access
normally provides while macros are run. Another example is a macro action which would
"Maximize" a form, thereby filling the entire screen with a form, after it is invoked.

c¢. Linking Input and Output Forms

One useful technique for linking input forms and output forms is
through the macro action OpenForm and its "Where Condition" argument. The initial
form displayed may request an item of interest. This form is not bound to a particular
source, and the control into which the user types the requested information is also
unbound. A command button on the form can then invoke a macro which retrieves the
necessary information based on user input, and then displays it. The simplest form of the

macro works in the following manner: the OpenForm action contains a number of

33

arguments, the first of which is the name of the form which is to be opened. The next
important argument is "Where Condition," which allows the programmer to specify which
field in the source of the display form is based on the control in the form receiving the user
input. An example of the syntax used is as follows: [Field Name] = Forms! [Input Form
Name]![Control Name]. This presents the user with the record having a match in that
particular source field with the information provided into the Input Form in the control of
the name specified. Another important argument is whether the user will be allowed to
edit the data presented or whether it will be "read only."
6. Modules
a. Use of Access Basic

Access Basic is not a traditional programming language and cannot
really be treated as such, since the language is tightly integrated with Access-specific
objects (such as tables, forms, queries, etc.) such that the language can directly manipulate
these objects. Access Basic is primarily used to perform tasks that cannot be performed
with Access objects though the use of macros, or is used to shield the user from the inner
workings of the application in a controlled run-time environment. Access Basic is
particularly useful for transaction processing, error handling and trapping, performing
DDE, and the creation of reusable code libraries. (Perschke and Liczbanski, 1993, p. 170)

Access Basic code is stored in objects called modules. Modules are
divided into procedures or functions, which are best used to perform specific tasks in
order to modularize program code and maximize reuse. (Perschke and Liczbanski, 1993,
p. 181)

Modules are used to define functions specified in the design phase of
Chapter ITI. Some actions specified in logical procedures are actually implemented in
modules vice macros, usually because they perform specific tasks which the macro

54

environment is not capable of performing. Modules can invoke macros, using the
*RunMacro” command, and macros can invoke functions in modules, using the
"RunCode"” action. This allows for flexibility and the maximum reuse of macros and
functions once they are designed.

b. Access Basic Language

Access Basic provides the capability for a number of different types of
data and the manipulation of those data types. It also contains several flow control
structures such as decision structures (If .. Then... Eise..., Select Case), loop structures
(Do Until... Loop, Do While... Loop, Do ... Loop While, For... Next). "Do Loops," for
example, are used to execute a block of code while a condition is True. (Perschke and
Liczbanski, 1993, pp. 187-188)

Within the Access Basic language, there are different types of elements,
and some of these are described as follows: Actions, such as those used with macros, can
be executed directly from Access Basic procedures using the "DoCmd" statement;
Functions are preprogrammed language elements which return a value which can be
returned in a statement, such as DDElInitiate, DDERequest, and many others; Objects,
such as Forms, Reports, Tables, Database, and others; Operators, like "+", "And", "Or",
*Not", and others; Properties, which are the same as the properties attached to objects,
and which can be controlled directly from the code if necessary; and several others. An
example of the Module Design Environment and the Access Basic Language is shown in

Figure 9. (Microsoft Corporation, 1992, Access Language Reference)

55

Micross Access - Module: Updates]

Fuactien UpdateRelatediode ()

* Chamges HODES ia related records is all tables
* Nrittee $.Talley V/10/93

G16Mede - Fornst{Mode Change}?[Nedel]
Newdode = Forms![lude Change)!Hewinde]
NadeX = Newhowe

Set MK9Z = Curreatd()

0in nede As Dymaset, NodeRepl s Bynaset, Replacemeat &S bynaset
Set nede = MN92.Createdynaset(“HODE™)

Set NodeRepl = MU92.Createdbynaset{ HODE-REPL™)

Set Replacenent = MKP2.Createdynaset(“REPLACEMENT™)

1f UpdateNode ~ Trve Thea :
1f MsgBax(“Are you sure you waat te change “ & SldNode & " te ™ & M=

Criteria = “(Node8] = °~ & NewMode & ™'~

C. DATA IMPLEMENTATION

Using the Access Tables facility, the relational design developed previously was
converted into an Access database. This process is fairly straightforward, in that relations
and their properties are converted respectively into database tables and fields. Tables and
their fields are listed in Appendix E. Most fields used in this program were of a Text
nature, since there were very few data items which were strictly numerical or "fixed"
formats.

The tables in this application contain long fields, due to the nature of the data they
contain. The length of fields, and therefore the length of a record, makes viewing records
in a "datasheet” or spreadsheet-type of format impractical.

Validation rules are entered in the form of expressions inside the Table design
function of Access, and are consistent with the attribute definition "masks" stated in
Appendix A, Section B. (Jones, 1994, pp. 48 - 49)

56

D. PROCESS IMPLEMENTATION
Process implementation consists of linking the required forms and reports,
developed initially during the design phase of Chapter III and shown in Appendix D, with
their underlying processes. The processes designed in Chapter III are implemented
through the use of queries, macros, and modules which connect the forms and reports to
the appropriate data in the tables. The methods and tools used to implement processes are
discussed below.
1. Process Development and Examples
Process logic developed in the design phase of Chapter III can be roughly
translated into a series of tasks which are implemented in a number of different ways.
Some tasks may be implemented in more than one way, and not all possible methods of
performing various tasks will be covered in this thesis, rather only those actually used.
a Implementation of Specific Process Tasks
Process tasks which are part of the process logic developed in the
Design Phase, such as update, activate, retrieve, and others, are implemented in fairly
standard ways within this application. Appendix E contains a listing of these tasks and the
way(s) in which they are implemented (modules, macros, etc.).
b. Process Example: Locate Supply Parts
The process which is listed in Procedure Ul.2L LOCATE(U) in
Appendix D is implemented using a combination of macros and an Access Basic
procedure. First, the INPUT PART# [UPDATE PART] form is open. The user provides
input in the form of a Part# and then "pushes" the Locate command button which
activates this procedure.
The "On Push" property activates a macro called Part Macros.Locate

Parts. This macro performs actions described in Figure 10:

57

1. Set Value - Description: Hides form
Arguments: Visible: No
2. OpenForm - Description: Opens the Part Supply Info form, retrieves the record
which has the value of Part# contained in the Part# field in the Part# Input Form, and
displays it in the form.
Arguments: Form: Part Supply Info Description: Opens the Part Supply
View: Form
‘Where Condition: [Part#]=Forms![Part# Input]![Part#]
Data Mode: Edit

Window Mode: Normal

3. RunCode Description: Checks to see if the Part# in the Part Supply Info form
is a null value, if so, then the Part# does not exist or no value was entered. A message box,
with a message to that effect is provided to the user and the user returns to the Part# Input
form.

Arguments: Function Name: CheckEmptyPart()

Figure 10 - Locate Part Macro

The function referred to in the RunCode action, CheckEmptyPart() is shown in Figure
11. Note, this function calls another macro, with the DoCmd RunMacro statement.

This macro is the one which returns the user to the Input Part# screen.

Function CheckEmptyPart ()

PartX = Forms![Part Supply Info}![Part#]
If IsNull(PartX) Then
wID = MsgBox("No matching Part # found (or No Part # entered)”, 32,
"No Match Found")
DoCmd RunMacro "Part Macros.More Parts"
End If

End Function

Figure 11 - CheckEmptyPart() Function

58

2. Query Development and Examples

Queries are important to this application because they provide the basis for
several important functions, which will be discussed in this and later sections. Queries
using outer joins and/or specified criteria are used in this application. Both select queries
and action queries are used in this application, and will be discussed in the examples
provided. A list of the queries in this application is provided in Appendix E.

This section will contain discussion concerning the implementation of several
of the queries in this database application. Note, there are a number of different ways in
which these queries may be accomplished, in order to achieve the same results.

a. Parts On Order Query

The Parts on Order query used for the Parts on Order report was
created in the QBE environment. The development of the report is discussed in Section 5,
below, but the implementation of the actual query is discussed here. In this query, two
tables are used in the query: PART and REPLACEMENT. These tables are linked
through the common attribute Part#. Because it is possible to have PART instances which
do not have corresponding REPLACEMENT instances, an outer join from PART to
REPLACEMENT is used to retrieve all instances of PART, including those that do not
have REPLACEMENT instances associated with them. Note, this outer join is designated
by the arrow on the relationship link between the tables in Figure 12. The selection
criteria used is that the value of the field Parts On Order is greater than zero, and the fields
Part# and Parts On Order are displayed. This query is shown in Figure 12, below.

59

Select Query: Parnts On Order

us NSN

Patit Price

Al Loc COSAL

Ckt Ref 1 Pats On

Notes Parts On O
Pattt Parts On Order

30

Figure 12 - Parts on Order Query
A second query is also used for the same report, Parts On Order2. This

query is used to link the REPLACEMENT table and the PART table to get all UD#s
associated with the selected Part#., This query is shown in Figure 13.

Microsoft Access - [Select Query: Parts On Order2]
EFile Edit Yiew Query Window Help

U NSN

Pantit Price

Ak Loc COSAL

CktRef 1 Parts OnHand

Notes Parts On Ordes

Parttt ub# Pats On Order
X L1 i1
>0

Figure 13 - Parts on Order2 Query

60

b. System Parts List Query

There are three queries used in creating the System Parts List report,
which is a list of all the parts which are used by the expert system, i.e. parts that currently
have replacements. Two are created in a similar manner as in the Parts On Order query
above, but instead of being based on one of the main tables in the database, they are based
on a temporary table which is created through the use of a "Make Table" action query.
The use of the action query will be discussed here, with respect to the creation of the
System Parts List report.

The first step in creating a "Make Table" action query, is to create a
select query, using the QBE environment as discussed above. The purpose of this query is
to select a list of unique parts from the REPLACEMENT table to be used as the basis for
other queries. The criteria Part# Is Not Null is also used, to eliminate records in this table
which have no value for Part#.

Once the select query is designed and tested, it is converted into a
"Make Table" action query by selecting "Query: Make Table" from the menus at the top
of the Access window. The name of the table to be created, when the query is performed,
is entered into a form as shown in Figure 14, below. The table created by this query, can
be considered a temporary table, and is named PartsList. Using the "Check Box" for
"Unique Values Only" at the bottom of this form ensures there are no duplicate values in
this new table, which could occur when several UD#s have the same Part#, as Part# is not
the original key field of the REPLACEMENT table.

61

Figure 14 - Make Table Query Properties

Each time this query is run, the PartsList table will be overwritten with
new data. Unless warnings are suppressed, this action will tell the user that this query will
overwrite existing data and verify whether or not the query should continue. The Systems
Part List query is used as the basis of another query, which are used in the System Parts
List report, and is shown in Figure 15. The other queries for this report are implemented
in the same manner as those for the Parts On Order report, in the previous example,
except they are based on the temporary PartsList table instead on one of the application'’s
base tables.

Figure 15 - System Parts List Query

62

3. Menu/Screen/Form Development Examples
Examples of the implementation of several forms are provided in the section
below. A list of the application forms is provided in Appendix E. This list also contains
documentation concerning each form's source, its controls and the processes invoked by
these controls, and any special characteristics or properties of the form.
a. Update Node-Replacement - Admin Form

This form is one of the most complex forms in this application. Itis
comprised of three separate forms, which are linked together in a form/subform
relationship. The "Form Wizard" is used to design the form/subform combination. With
two layers of subforms, only the inner two forms could be designed using the Form
Wizard method. All forms may also be created with the Form Wizard, using the "single-
column"” selection, and adding a subform control from the Toolbox as required.

(1) Form: Replacement Info Sub(sub)form. The first form created
was the form based on the REPL ACEMENT table. The first step after selecting the
"Form: New" button, was to chc >se 'ne correct table, and then select the “Form Wizard"
button. After that, the Embossed "look" was selected from the choices presented. Next,
the fields in the table were listed, and the ones to be included in the table were selected, in
the particular order desired. The final step is to select a title (form heading) for the form.

In this form's properties box, the scroll bars and the record
selectors were checked off to prevent the user from trying inadvertently to select records
using these tools. A property in the Form Header (section) properties box was used to
"hide" the header section. Finally the form was resized and the text boxes moved so that
the field labels display in their entirety.

63

(2) Form: Node-Replacement Info Subform. The Form Wizard was
used again to create a form, based on the NODE-REPL table. In addition, to changes
made to the previous form, the "look" of the UD# field was changed to “raised” versus
"sunken", to distinguish a field which is not directly updatable from ones which are not.

Several controls were added to this form: two command buttons,
three labels, and the subform. The "command button" button on the toolbox was used to
add these controls to the form. First, the properties were changed as follows: the caption
was changed, so the words on the button indicated the function of the button; and the
Update Macros: Scroll Up macro was added to the "On Push" property of the "Back"
button and another macro to the "Fwd" button, to provide the correct functionality.
Three labels were added to provide information to the user concerning the buttons. The
palette was used to add a frame and color to one of the labels, to draw the users attention
to the information contained therein.

The third type of control, the subform/subreport control, was then
added to the form. Through trial and error and switching between form views (Design
and Open), the subform was sized so that it displayed correctly on this form when this
form is opened. The Source Object control must contain the name of the subform, which
in this case is Replacement Info Sub(sub), and the Link Master/Child Fields property is
set to UD#.

Figure 16 shows the design environment of this form. The
properties box for the subform control is shown in the upper right-hand corner, the
toolbox is shown in the lower right-hand corner, and the palette is shown in the lower

center of the figure.

Microsoft Aeeeu

Toe Butors o iook ot | (et

Mase UDs for this Node E Moe UDs] [
WAs Aoplesbiel {uDw:] {Uo#

{'T)Mdion Reterence: !} m.l

————

ol Svusance: O Nor O fained O Sunken

BEBEEEERN .
EBEREN C.--0
B Clear:(]

Figure 16 - Node-Repl Info Form Design Environment

(3) Form: Node-Replacement Info. This is the main form for this set
of subforms, and is the one opened by the command button "By Node#" on the "Select
Change" Submenu of the DB Maintenance Submenu. The form and its controls are
designed in the same manner as the previous form. There are two differences to this form:
one is that the header is left so it is visible and the second is that the "*" button invokes a

macro which in turn invokes a series of screen displays and associated logic.

65

b. Input Node# Form
This form was not designed using the Form Wizard since it is not based
on a source abject . Form properties were set so . .at there were no record selectors or
scroll bars visible, as in the previous forms. When a blank form is opened, there is no
automatic creation of a form header or footer, so a Label control was used to add a form
heading. Two command buttons were added, with each button invoking a different macro
using the On Push property.
4. Report Development Examples
The reports implemented in this application are listed in Appendix E. These
reports were all implemented with the Report Wizard, using the "Executive Look."
a Parts On Order Report
The Parts On Order report is comprised of two reports, Parts On
Order and Parts On Order2, which are combined in a report/subreport combination. A
sample report is provided in Figure D-16, Appendix D.
(1) Report: Parts On Order Subreport. The Parts On Order report is
a single-column type report based on the Parts On Order2 query, which was discussed in
Section 2.b.(1)(b) above. While both Part# and UD# are included in the report source
query, only UD# is included on this subreport since Part# will be shown on the main
report. The field to be used for a sort order was also selected. The default settings for
Report Header and Footer were changed so that no Headers or Footers, either Report or

Page, were visible. The design environment of this report is shown in Figure 17.

Figure 17 - Parts On Order Subreport Design Environment

(2) Report: Parts On Order. This report was based on the Parts On
Order query (See Section 2.b.(1)(a), above). Both Part# and Parts On Order Fields were
placed on the report, sorted in order of Part#.

A subreport control was created through the use of the toolbox,
with its source being the name of the subreport (Parts On Order2). The size of the
subreport must be manipulated within its design environment so that the detail section of
the subreport fits within the size of the subreport control. This is performed largely
through trial and error, and by noting the size of both items on the ruler. The "Link Child
Fields" and "Link Master Fields" are set to Part#, since this is the attribute which links the
report and subreport such that all UD#s for a particular Part# are listed in the subreport
section of the report. In addition, the default is set so that one record of the main report is
displayed on a single page. If, as in this case, it is desirable to have multiple records per
page, it is necessary to resize the detail section of the form so that the Page Footer section
break is right after the last item in the report design, the Parts On Order field and its label.

67

The design environment of this report is shown in Figure 18. An example of the report
itself is shown in Figure D-16, Appendix D.

Subform/Subreport

»
. - : ") N 7 . ‘.7 7 B ‘“u“:»”. : o e

Figure 18 - Parts On Order Report Design Environment

b. System Parts List Report The System Parts List report is comprised of
two reports, System Parts and System Parts2, which are combined in a report/subreport
combination. The implementation of these reports is very similar to the implementation of
the Parts On Order Report, and only the differences between the two reports will be
discussed. An example of the printout of this report is provided in Figure D-18,

Appendix D.

(1) Report: System Parts List Subreport. The System Parts List
report was created using the “Report Wizard,” based on the System Parts query, which
was discussed in Section 2.b.(2)(b), above. This report was created by copying the Parts
On Order report and making two changes. First, the Report property Record Source was

68

changed to System Parts2 and the detail section of the report was enlarged slightly to fit
into the space of the main report.

(2) Report: System Parts List. This report was designed using the
“Report Wizard," based on the System Parts query (See Section 2.b.(2)(a) above). Part#
is the only field on this report and is sorted in ascending order. The subreport control was
added, its label removed, and System Parts2 was entered into its Source Object property.
The Child Link Fields and Master Link Fields properties were also UD#. Again, this
provides all UD#s for each Part#. In order to report as many parts (and their UD#s) per
page as possible, the detail section was compressed to the smallest practical size. The

design environment of this report is shown below in Figure 19.

MComplete Parts
S =Now()

Figure 19 - System Parts List Report Design Environment

69

E. OUTPUT OF THE IMPLEMENTATION PHASE

At the conclusion of the implementation phase, the database application is
completed, and operational, as designed. This includes the development of the tables,
forms, reports, and their underlying processes and queries. If a prototyping methodology
was not being employed, the database application would be independently tested and
delivered to the user. Instead, the prototype application is used as a device to elicit
feedback for future enhancements. Once the users experiment with the prototype, they are
able to better define their requirements and comment on the preliminary design, and its
structure and processes could be changed accordingly. The final chapter contains some of
the feedback received from the program managers at NSWC, which will guide the
direction of follow-on work.

The next chapter contains a discussion of the separate issue in this thesis, that of the
interface between the MK92 FCS MAES and this database application.

70

V. INTERFACE BETWEEN EXPERT AND DATABASE SYSTEM

In general, the purpose of creating an interface between the expert system and a
database is to provide a powerful mechanism for storing and managing information
required by the expert system user, which is more efficient than mechanisms provided by
the expert system itself. Efficiency can be defined both in terms of flexibility to retrieve
different kinds of data for different purposes and in terms of maintainability and
modifiability. This chapter discusses Windows interprogram communications mechanisms
and the efforts made towards using these mechanism to link the MK92 FCS MAES and
the Access database application which stores and manages the information the expert

system is requires.

A. WINDOWS INTERPROGRAM COMMUNICATION
1. Dynamic Data Exchange (DDE)

DDE is one method of interprogram communications between two Windows
applications. The program that initiates the communication and requests data or services
is called the client, and the program that resnonds to the client's request is called the
server. Some applications can be both client and server.

DDE can be used to establish links between programs in several different
ways. As previously mentioned, one method involves requesting data (or services) from
the server. Another method involves the server notifying the client that an item has
changed value, after which time, the client could make a request in order to obtain the new
data. A third method involves a "hot link," which means that the server application sends
the new value to the client any time the data value changes. (Perschke and Liczbanski,
1993, p. 243)

71

In general, the application initiating a DDE link opens a DDE channel with the
other application. The client can then use a number of DDE functions or statements to
perform different tasks. Since the syntax used for DDE by different programs is not
standard, functions available to Access and Adept are discussed separately.

a DDEin Access

Access is capable of handling a number of different DDE functions or
commands, and these are listed in Appendix F. Access has the capability of being both a
DDE client or a DDE server. DDEInitiate() is used to initiate a conversation between
Access and another application. Included in the argument for this function is the name of
the application which can respond to DDE, such as the name of "Adept," and the name of
the fopic, which in the case of Adept is the specific "application name" being executed.
The topic name must be recognized by the "called" application. This function is used to
establish a channel between two applications, which can be used later with other DDE
functions. The use of this and other functions is shown in the example provided in
Appendix F, Section C-2. (Microsoft Corporation, Access Language Reference, 1992,
p-118)

Another important function is DDERequest(), which is used to request
an item of information from another application. Arguments for this function include the
channel (as previously mentioned) and the ifem of interest. The name of the item must be
something which is recognized by the other application, such as variable or spreadsheet
name. (Microsoft Corporation, Access Language Reference, 1992, p.121)

DDETerminate() is used to close a channel which has been opened,
with the argument being the channel. (Microsoft Corporation, Access Language
Reference, 1992, p. 124)

72

Additional commands are available, as shown in Appendix F, Section

A-1, but they are not used in this thesis.
b. DDEin Adept

DDE in Adept is very similar to DDE in Access, except that different
syntax is used for similar functions. Like Access, many functions involve a channel, an
application, a topic, and/or an item. Theoretically, Adept can carry on a number of
conversations with different client programs at the same time. In a similar manner,
another application can request data from more than one Adept application, or two
different applications can request information from two different Adept applications at the
same time. (Symbologic Corporation, 1991, p. 33)

The first step in initiating a conversation with another application is to
use the OpenChannel function to open a channel. To use this function, the name of the
channel, the other application, and the topic are required (Symbologic Corporation, 1991,
p. 36). In the case of an application running under Access, the application name is
"MSAccess,” and in the case of an Access run-time application, the application name is the
name of the run-time executable filel. The syntax of the commands actually used by the
Adept application for the purpose of this thesis is provided in Appendix F, Section C-1.

Adept can request information from another application, using the
Request function. In this case, the channel, item, and data arguments are used. Itemisa
variable which identifies the data (in the other application) and data is a variable where the
data is to be stored in Adept. (Symbologic Corporation, 1991, p. 37)

Execute can be used to execute a function, run a program, perform a
task, or a number of other things in the other application. This function uses the
arguments channel and command. The command is the most important part of this

1 A file with the ". MDB" extension.

73

W

function, as it must be something that can be understood by the other application. In
general, the syntax of the other program must be used to correctly use this function.
(Symbologic Corporation, 1991, p. 39) A good example of this is the use of Execute with
respect to an Access application. Only commands which Access understands can be used
with the Adept Execute command.

One other function which might be useful is Poke. This function uses
arguments channel, item, and data to specify what data item in Adept should be “sent" to
the other application, and where in the (client) application it should go. (Symbologic
Corporation, 1991, p. 39)

Other commands are available, as shown in Appendix F, Section B, but
they are not used in this thesis.

2. Object Linking and Embedding (OLE)

Object linking and embedding, or OLE, is a Windows mechanism which
allows objects created in one application to be linked to or embedded in another
application. This method of interprogram communication is closely related to DDE, and
like DDE there are both clients and servers. As of Version 1.1, Access can only act as an
OLE client, in that it can only accept OLE objects from the server application.2 An
enhanced version of OLE, OLE 2.0 is beginning to be used in applications, however
Access 1.1 is not OLE 2.0 compliant. (Jennings, 1993, pp. 504-505)

OLE capabilities were first used with Microsoft Excel TM and
PowerPointTM, and were officially introduced with Windows 3.1. In general, an OLE
server provides a source "document” to an OLE client "document.” Once an OLE object
is embedded or linked to the destination document, this document becomes a "compound

document.” In the case of Access, the destination document can be tables or forms. A

2 Access 2.X is expected to be OLE 2.0 compliant.

74

source document can be a file from a word processor, a spreadsheet from an application
like Excel, a slide from a graphics program like PowerPoint, a graphics image from a
variety of programs, or even multimedia objects such as music. (Jennings, 1993, pp. 505-
506)

When an OLE object is embedded, a copy of the OLE object's data is included
in the destination document. Embedding an OLE object ensures that the object’s data is
available regardless of what happens to the source. Linking a document is more
appropriate when the source document is likely to be changed periodically. However, if
the source document gets moved to another location or deleted, it no longer exists at the
destination either. (Jennings, 1993 pp. 510-511) A linked object will also update in the
client application whenever it is edited or updated in the server application which created
it. (Perschke and Liczbanski, 1993, p. 238) In some cases linking will save disk space,
since the object is only stored in one location. Graphics images, however, will require as
much or more disk space to link to an Access table or form, as to embed it. (Jennings,
1993, pp. 510-511)

One of the primary advantages to storing documents as OLE objects within
Access, rather than as "pictures," is that by using OLE the object can be edited through
the original server program which was used to embed the program. A source document
which has been embedded as a picture, rather than as an OLE object, can no longer be
edited. (Jennings, 1993, p. 511)

Other applications which can act as servers include Lotus Corporation Ami
ProIM, WordPerfect TM for Windows, CoreIDRAW!TM, and Windows PaintbrushTM.
There are also a number of commercial OLE-compliant drawing and image editing

applications which can be used to create and manipulate photos and other images.
(Jennings, 1993, pp. 511-517)

75

Adept is not OLE compliant at this time, but may be in future versions.

B. IMPLEMENTATION OF DDE INTERFACE BETWEEN ADEPT AND
ACCESS APPLICATIONS
1. General Requirements
Logically, the basic functionality of the interprogram communication between
Adept and Access is as follows:
1. When a conclusion is reached in Adept and part information is needed from the
database, Adept must initiate a conversation with Access, asking if Access is ready to
communicate.
2. If Access is ready to communicate, a communication channel is opened between
Access and Adept.
3. Adept sends a message to Access asking for data, or asking Access to perform a
query and supplies the appropriate parameters.
4. Access acknowledges the request and carries it out (or denies it).
5. After the data and commands are exchanged, Adept sends a message to the Access
program notifying it that the conversation is about to be terminated and then closes the
communication channel.
2. Possible Solutions
To perform the above basic functionality, an obvious solution is for the Adept
application to send the Node Number into the Access Application, where a query would
be run, and then the Adept application could request (or the Access application send) the
results of query, so it can be displayed to the user.
Another obvious solution would be for an SQL-type query to be made directly
from Adept, eliminating the need to send query parameters to Access.

76

OLE was obviously not an appropriate interface between the Adept expert
system and the Access database because Adept does not currently support OLE.
a. Establishing Communications: First Approach

(1) Methodology. The following steps were taken in the first attempt
in establishing communications between the two programs:

1. Open a channel between Adept and Access, with Adept as the client and Access as
the server.

2. Use Poke from Adept to Access to place the query parameter into a temporary table
in the Access application.

3. Execute a query, whose parameter is the value received from Adept through the
poke.

4. Request the results of the query and store it in a variable in Adept to be displayed to
the user.

S. Close channel.

(2) Results. The problem with this approach is that Poke cannot be
used to send data into an Access table. Since the initial attempt at establishing a link
between the expert system application and the database application using the Poke
command to send information to the Access application failed to work, a second approach
was used.

b. Second Approcch

(1) Methodology
1. Open a channel between Adept and Access, with Adept as the client and Access as
the server.

2. Execute an SQL-type query directly from Adept, which locates the correct records
based on a parameter related to a particular expert system result node.

i

4. Request the information into an Adept variable.
3. Close channel.
(2) Results. SQL queries of any sort did not seem to work from

Adept to Access. While the set of statements required for the type of query in
requirement 2, above, is complex, even simple SQL-type statements did not get any
response from Access. Adept may not support the kind of statements Access needs or the
correct syntax may not have been used.

The first attempt to use of SQL-type statements was to perform
the complete query as shown in Figure 20, below. The second attempt to use of SQL-
type statements was to try to solve the problem of how to get information into an Access

table as shown in Figure 20.

**Select particular records from one table to start with:

AccCall = OpenChannel("MSAccess”, "2MK92DB.MDB;SQL");

Execute (AccCall, "RunSQL SELECT * FROM Node WHERE [Node#] =
H'lN006!"';l');

**Update 1NX table with Node Number vice Poke command:
AccCalls = OpenChannel("MSAccess","C:\ACCESS\2MK92DB.MDB;SQL");
Execute (AccCalls, "RunSQL UPDATE INX SET [Node#] = ""N006"";");

Figure 20 - Adept DDE Statements Using SQL

¢. Third Approach
(1) Methodology
1. Open a channel between Adept and Access, with Adept as the client and Access as

the server.

78

2. Use the Execute command to execute an Access Query, with the appropriate
parameters.
3. Use Request to get the results of the query and store it in a variable in Adept to be
displayed to the user.
4. Close channel

(2) Results. Problem: While Adept DDE syntax supports the use of
an argument (i.e. a query parameter) in the Execute command, Access does not support
the use of arguments with its queries or macros. Since Access functions do support
arguments, passing parameters between the Node variable in Adept and the Node_number
variable in an Access function was attempted, also without success.

In the Execute statement in Adept, as previously discussed, the
first item is the channel, and the second is the command. The command has to be
something understood by Access. First, the command "RunCode PartsQuery()” (or any
number of syntax variaticns) could not be used in an Execute statement, as the RunCode
function can not be used directly by a DDE Execute. Instead, the RunCode action can be
used in a macro, which then may be executed using the syntax "Execute(Chan,
*[1TableOnly]". Unfortunately, there does not appear to be any way to pass arguments to
a macro.

There appears to be problems with the compatibility of the Adept
SQL syntax with that of Access in that arguments outside of the Access statements cannot
be passed with them. EVenifanargumentcouldbeused, it might not be in the form of a
vanable, thus eliminating some of the benefits of using a database if each Node number
had to be "hard-coded” inside scripts.

79

d Fourth Approack
(1) Methodology This methodology was suggested by Microsoft
Product Support personnel, and involves having Access request the query parameter from
Adept, instead of having Adept send it to Access.

1. Open a channel between Adept and Access, with Adept as the client and Access as
the server.
2. Use Execute to run an Access Basic function which would:
a. Open a (second) channel between Access and Adept, with Access as the client
and Adept as the server.
b. Perform a DDERequest from Access to retrieve the query parameter, node
number.
c. Store the variable returned in a temporary table.
d. Close Access to Adept (second) channel.
3. Use Execute to run a query, whose parameter is the value received from Adept
through Access' DDERequest. Several different types of queries were attempted, and
these will be discussed below.
4. Use Request to get the results of the query and store it in a variable in Adept to be
displayed to the user.
5. Close channel.

(2) Phased Testing. Because this was a complex series of actions,
each step was tested separately before running the entire sequence. One problem with
interprogram communication is that there is no easy way to debug code, and only through
trial and error and modular testing, can problems be tracked to any particular statement.

80

The query (step 4) was tested first. After that, the DDE request by Adept (step 5) was
tested. Next, the request from Access to Adept (step 2b) was tested. Each step, and the
problems encountered, is discussed in the following sections.

(@) Query Solutions. Once it was determined that Adept could
easily retrieve the contents of an entire table from Access, the goal became to place all of
the required information, the results of query, in a single temporary table. This table has a
structure which matches the data items required by the expert system. Because this is an
extremely complicated query in Access Basic, a better solution is to implement a "Make
Table" Action query using QBE which is invoked from a macro.

If the Node# was placed in a temporary table, the macro
containing the OpenQuery action could be executed by the Adept application, and the
temporary "results” table would contain the correct information. Therefore step 4 was
working correctly, given the query argument was correct in the table on which the query
was based. This query is discussed in detail below, in Section 3.

(b) Adept Request. Given the table created in Step 4, above,
the next step is to retrieve it. As was predicted, retrieval of whole table was simple, and
each record could also be retrieved separately. This process is discussed in detail below in
Section 3.

(c) Access Request. If the Adept application assigns the item
of interest to a variable, an Access basic function was able to perform tasks which
requested the value of that variable from Adept, placed it into an Access variable, and then
stored that variable into another temporary table. This is also discussed in detail below, in
Section 3.

(3) Results. While each one of these processes worked
independently, they did not work correctly in sequence. First, Adept calls Access and

81

executes a macro. This macro then executes a function containing the DDE commands
inside, among others, which in turn open a channel with Adept and run the same
DDERequest command which had already been tested. This time, when this function was
executed from Access, it did not perform correctly and Access could not get Adept to
respond. This problem is also covered in more detail in Section 3 below.
3. Implementation Specifics

The Adept side of the interprogram communications is contained in a
"combination node," which is the combination of two custom nodes and one display node.
This combination node is shown in Figure F-1. The Access side is contained in several
different structures: macros, functions, tables, and a query. The implementation of
specifics on both sides, with respect to the methodology in the fourth approach discussed
above, are provided below.

a. Node Number from Adept to Access

The Adept node contains a script in which the item of interest, the node
number, is placed into the variable Node. The node number is directly related to the
expert system conclusions, which are shown in the knowledge representation provided by
the experts. This script also contains statements which open a DDE channel to the Access
application and then execute a macro, as discussed above. The script which performs
these functions is shown in Appendix F, Section C-1 (Part I).

The Access macro, executed through the DDE command by Adept, uses
the command RunCode to execute the Access Basic function GetNode(). This function
first opens a channel to Adept, and then requests the value of the Adept variable Node,
from the Adept application using the DDERequest function. As mentioned in Section
A.1.(a), above, the item in this request must be using syntax recognized by the server

82

application, in this case Adept. The GetNode() function and DDERequest syntax is
shown in Appendix F.

The temporary Table 1NX is used to store the value of Node. Access
Basic commands in GetNode() delete the previous value and add the new value to the
INX table, close the table, and then terminate the channel.

b. Part Information Records from Access to Adept

First, a "Make Table" action query is used to retrieve the required
information into a temporary table, and then Adept requests the information contained :n
that table. Ideally, the macro which performed the RunCode action in the previous
section would then perform the OpenQuery action which executes the query. These tests
were not performed in this manner since the program halted in the GetNode() function
and the query would never have been executed.

(1) Part Information Query by Access. Initial tests of this function
were performed by manual input of a value of Node# into the INX table. The function
which performs this task, MakeTable(), executes three macros: WarningOff,
INewTxQuery, and WarningOn. The WarmningOff/ WarmningOn combination is used to
suppress warning messages which occur when the query overwrites existing records. Ina
procedure such as this, the warning messages would either hang up commuaication at
worst, or annoy the user unnecessarily at best. Since the user does not need to know what
is happening, it is best to suppress messages after the functions generating them are well-
tested.

The 1NewTxQuery macro performs one task; it performs an
*OpenQuery" action on the Query 1XQ, thus executing it. This query is an action query
which is performed on the INX, NODE-REPL, and REPLACEMENT tables. Since INX
contains only one value, this query finds all matching instances of REPLACEMENT by

8

the relationship between NODE# in the first two tables and UD# in the second and third
tables. In addition, since this is a "Make Table" type of action query, it places the selected
records into a table which is named NEWTX.

(2) Information Request by Adept. The second part of the custom
node retrieves the information from the table created with the macro used in the previous
node. After a channel was opened, each record in the temporary table was retrieved using
the DDE command Request. With respect to a table, Request can be used with
arguments such as "FirstRow," which requests the first record in a table; "NextRow,"
which requests the next row in the table; "FieldNames," which returns the names of the
fields in the table; and "All," which returns the entire table including field names. In this
case, after the first record was requested, up to three other records were also requested.
This script works for up to four replacement parts, a number selected because currently
the data only shows nodes which require one, two, or three related records. Currently,
expert system nodes only required three records.

This request and display are awkward at best, because
programming techniques used with arrays could not be used by Adept scripts. If records
could be counted, a loop could be used with a counter, vice the fixed values. Since there
was no simple way to count the number of records, "flag" values were used, such that if a
variable still contained the flag value, a record had not been assigned to that variable.
These flag variables were used in a series of "If...then" statements to determine how many
records or "Rows" had been retrieved from Access.

c¢. Display of Part Information to User

The purpose of then second Adept node and its script is to format the

information retrieved from the database. If Access records stored data in fixed sized

fields, it would not be necessary to change the format before it is displayed. In fact, the

84

entire table, field headings and all, would have provided an effective and relatively quick
way to display the information. Access however, stores each field in only the amount of
space required by the data it contains; that is, if a field does not contain any information it
is stored in the minimum amount of space, and if a field contains a long data item, then it
takes up more storage space. This creates a problem when several records are listed one
after another since the fields will not line up vertically, unless the data for a field just
happens to be the same size. Each field is also separated by <CTRL><TAB>. An

example of what this would look like is provided in Figure 21, below. In a word

processor, it might be possible to get the fields to line up, if tabs were correctly placed, but
the Adept display did not have that capability so a different method had to be used. -

UD¥ Part# AkLec CitRef Notes .

412/A2-W4s 5399697 432/A2-W43 SFe-14-7SH1 W4S (A2CDOS ASSEMBLY) *

412/A2-HARNESS ASSEMBLY 5772618 4UA-HARNESS ASSEMBLY SF0-14-7SH1 A2PUAZP7FLEX CARLE *
412/A1A3-W3S 5478112 432A1A-W3S SFe-14-7,SH1 JIW3SPL SEMIRIGID CABLE .

Figure 21 - Records Retrieved3

First, the "*" character was added in a field at the end of each record as
a record end marker. This allowed the length of each record to be determined by finding
the "*" character and using the "Length" function. The record was also put into a text
variable using the "GetSubText" function. Next, the value of each field is determined by
finding all characters before the first <CTRL><TAB> combination. "FindText" finds the
length of this field, and then "GetSubText" gets the contents of the field by using the
arguments (record variable, start (offset), and ending (offset)). After the first field in the
record variable is determined, "GetSubText" is used to get everything remaining, and

3 This display is an example of what the display would look like if the entire table were
retrieved, except the * field would not be required.

85

assigns this to the record variable. At this time, the process repeats, since now the second
field in the record is the first field in this variable. This continues until the values of all five
fields for each record is placed into a separate variable. Since these fields are still of
various lengths the best way to display them is in a vertical (left justified) manner. This is
shown in Figure F-2, Appendix F. The script used for this is shown in Section C-1 (Part
II), Appendix F.

This above methodology is extremely contrived and extremely inflexible.
In addition, the performance is very slow when there are several records.

C. FINAL RESULTS

This section primarily applies to the fourth approach, but some of the "lessons
learned" came from other approaches as well. After abortive attempts to execute an
Access function, it was discovered that DDE can not directly use several commands, such
as RunCode. Macros can not be used directly, because the DDERequest function can
only be executed from Access Basic procedures. Therefore, Adept can execute a macro,
which uses the RunCode action to execute an Access Basic procedure. In the fourth
attempt, this procedure contains statements which perform a DDERequest to Adept,
requesting the value of the variable Node, which contains the node number about which
the user requires information.

If this procedure is executed from Access, there was no problem; Access
could indeed retrieve the correct Node value (assigned by an Adept node) and place it into
an Access variable, which could then be put into a table. The code required to perform
this task is provided in Appendix F, Section C. It could not, however, be executed from
Adept. The Adept application performed a DDE execution of the 1TestDDENodeReq
macro, which instructed the Access application to make a request. When that request was
made, the Adept application did not respond back to Access, and the process "timed out."

86

It appears that once an Adept application makes a DDE request from an application, it
ceases to listen for other requests. At this time there is no explanation for this problem,
and Softsell Product Support personnel are looking into a solution or a way to work
around this anomaly.

One other possible solution was briefly explored, by using an alternate Adept
procedure as a third-party. There were two ways to approach this, and both were tried.
One was to have the MK92 FCS MAES (or the test application) call a second application
running in the background. The main application would tell the second application to
*call" the Access application, which would then request the value of Node from the main
application. This met with similar results as the first trial, that is, either one application did
not recognize the other or the process did not execute properly and “timed-out." One
other possible solution would be for the Main Adept application to send the Node number
to the secondary Adept application, and have Access request the information from the
secondary application, which should be "listening" for requests since there were no
outstanding requests of its own. Initial trials with this methodology did not produce
successful results since attempts to put Node into a static (one not being operated on by a
user) procedure did not work.

Part of this research was successful, since establishing certain types of one-
way communications was fairly effective. Possible uses for DDE should be explored in
future applications, however DDE can not be relied on to solve all interface problems,
since there appears to be no consistent implementation of DDE even within Microsoft's
own programs let alone with third-party vendors. OLE 2.0 may be more capable and
combine some of the benefits of both DDE and OLE to provide an interface between two
programs, not just for display of objects, but for actual use and manipulation of them by
the client application in addition to allowing changes from the server application. Until

87

OLE objects can be recognized as text strings, vice as something else, it will be difficult to
use them in databases for query purposes when the user input will generally still be in the
form of text.

Other possible solutions to the Adept - Access application interface problems
are discusse in Chapter VL.

VL. LESSONS LEARNED AND CONCLUSIONS

This project established the viability of developing a separate database that inter-
faces with the MK92 FCS MAES and can be used as a stand alone application for tracking
and maintaining Parts and other information. In this chapter, the feedback provided by the
project sponsors concerning the functionality of the prototype database application is
discussed. In addition, requirements for follow-on work for both the interface between
the MK92 FCS MAES and the database application, and the stand-alone run-time and
administration versions of the application are presented.

A. SPONSOR FEEDBACK ABOUT PROTOTYPE
Feedback from sponsors concerning the prototype database application fall under
four categories: Expert System Interface, Parts Supply Information, Usage, and Database
Maintenance. Each or these categories are discussed below.
1. Expert System Interface
a. Acknowledged Communication Problems
As previously mentioned, there are problems with the using DDE for
interprogram communications with the current versions of Adept and Access. The spon-
sors acknowledged these problems, as well as the probability that other possible solutions
may not provide a seamless interface as was hoped. The main problem with alternative
solutions is that it is unlikely that the interface between the two programs will be transpar-
ent to the user, and may actually require user input for information retrieval instead of be-
ing totally "automated.”
b. Performance Issue
Due to the slow performance of Adept in displaying an Access table in
an effective manner, further pursuit of the Adept-Access DDE interface may not be of any
value. If another DBMS software program were known to be more capable of performing

89

the required DDE functions and could store data in fixed length fields, the overall per-
formance would probably be acceptable. Since, however, the DDE performance of other
DBMS software is still unknown, it is more beneficial to look at other interface methods.
2. Parts Supply Information Subsystem
While both sponsors and shipboard technicians indicated that parts informa-
tion is a highly desired feature, some record format changes would be more beneficial.
Technicians do not necessarily have a supply of spare parts, therefore keeping track of in-
ventory is not really required. The sponsors however, felt they could use an inventory
system at their site. This system would be used to keep track of parts they receive from
decommissioned ships and would be distributing to other ships at no cost, since the parts
are not in the actual supply system. Slight changes to existing forms and tables could be
made to provide this capability, as well as perhaps an additional table to track requests re-
ceived from ships Changes to the forms, reports, and processes available to the techni-
cians will not be significant and will merely simplify those which already exist.
3. DB Maintenance Subsystem
While there is still discussion concerning the functionality of this system, and
what items of data users would be able to change, the need for users to maintain at least
some of the data is a desirable feature. When this feature is implemented, password
protection should provide security within the application to prevent inadvertent damage.
4. Usage Subsystem
While there is value in obtaining usage data from the users for future use by
management, this may be outside the scope of the application's actual requirements.
S. Administrator and User Interfaces
The separation of Administrator and User menus and functions was recog-
nized as being a good idea. Non-programmers may be doing the bulk of data store main-

tenance with respect to this system, and may be responsible for updating data stores and
providing updates to the user. Providing extra capabilities for the administrator will
facilitate overall system maintenance while keeping the user interface as simple as possible.

B. DIRECTION OF FOLLOW-ON WORK

Follow-on work should continue the investigation of a viable method for accessing
the database from the expert system. It would also implement changes suggested by the
program manager and complete the implementation of several maintenance related
functions which were not completed in this thesis.

1. Expert System - Database Interface

One possible way to provide an expert system - database interface is to pro-
vide the user with the capability to use the database directly to retrieve the required infor-
mation. This might be achieved by using an icon activated program which first opens
Access to the required screen through the use of a2 macro, and then begins the Adept pro-
gram. In this approach, both Adept and Access and applications will be running simulta-
neously. The user, however, will only be seeing the Adept screens, since they generally
will be in the foreground. In order to retrieve information about a required replacement or
part, the user could invoke a process to provide direct manipulation of the database.

If this process could "minimize" the Adept window, the Access wiiidow
would then be visible to the user. At this time, the user would have to make an entry in
order to retrieve the correct information. This would accomplish "manually” what this
thesis tried to automate through the use of DDE. Perhaps Node# would still be a good
argument for the query even though it is not particularly meaningful to the technician, be-
cause it is short and fairly easy to remember (vice UD#s which are difficult to remember).
Using Node#s would allow the current database structure to be used in retrieving all ap-
plicable information about Parts and Replacements, instead of about one UD# at a time.

91

The display form would use a command button to invoke a procedure to maximize Adept
and put Access back in the background until needed.
2. Database Application Functionality
As mentioned above, the functionality of each of the different subsystems re-
quires a number of changes. Follow-on work will complete the planned functionality,
which still remains a requirement, particularly in the area of maintenance, and will make
other changes as requested by the sponsor. The sponsors have expressed an interest in
adding the capability to track excess parts which are distributed to ships. This may require
additional tables tc track the requests from particular ships for particular parts.
3. Database Application Environment
Once the application is complete, the database environment has to be made
secure. Generally, the run-time environment does not allow the user access to objects;
however, a user could inadvertently halt processes or cause problems if care is not taken
to fix some of the current loopholes. Error-trapping routines need to be added to ensure
there are no abrupt terminations of the application. Customized help files may be added,
and would prove useful. (Perschke and Liczbanski, pp. 295-296)
4. Documentation
Documentation for both the user and the administrator should be completed.
This thesis provides the foundation for some of the system documentation, but updates
will be required as the system changes. In addition, this thesis does not provide a User's
Manual, since this is only the first generation prototype of this system.

C. LESSONS LEARNED
1. Database Selection
Using a database which supported fixed fields would have solved some of the
problems and performance issues associated with the display of information retrieved from

92

E

the database by Adept. This may be a moot point, however, if no database can accept a
query parameter passed from Adept.
2. Application Development

More interface with the user would have been helpful. A great deal of time in
developing this system was spent in researching the interface between the expert system
and the database and in attempts to get it working, rather than specifying the functionality
of the system precisely. It should be pointed out that even if the nature of some of the
prototype's processes and forms change, most of the existing objects and processes could
be used with little modification.

D. CONCLUSION

This thesis proved the viability of using interprogram communicationbetween a
database and an expert system to enhance the functionality of the expert system and to
help the users save time spent looking up related information manually. Database vendors
are working to standardize interprogram communications as users demand the capability.
New releases of both Adept and Access are expected to provide capabilities which may
solve many of the existing problems. Insights gained in this thesis can be used as a model
to develop approaches for other attempts at interprogram communications.

This thesis is a typical example of the problems and issues faced today m the soft-
ware development environment when trying to get different vendor's software to commu-
nicate with one another. This sort of interprogram communications has been one of the
most difficult problems to solve, and will continue to be so, as long as adherence to any
sort of communication protocol standards is not demanded by the users and/or application

developers.

93

APPENDIX A - ENTITIES, ATTRIBUTES, AND ENTITY-
RELATIONSHIP DIAGRAM

A. ENTITY DEFINITIONS AND ATTRIBUTES

NODE Entity
NODE¥#; node-number
MODULE REF; module-reference
REPLACEMENT Entity
UD#; circuit-card-location-ref
PART# part-number
ALTLOC, alternate-location
NOTES; replacement-notes
PART Entity
PART#; part-number
NSN; stock-number
PRICE; part-price
ALLOWANCE; part-allowance

PARTS ON HAND; parts-on-hand
PARTS ON ORDER; parts-on-order

NODE-REPL Entity
NODE#, node-number
UD# circuit-card-location-ref
CKT REF; circuit-reference
USAGE Entity
USE#; usage-number
DATE; usage-date
PART REPLACED; part-replaced
NOTES; usage-notes
(Others TBD)
__ denotes key attribute of entity

B. ATTRIBUTE DEFINITIONS

alternate-location
Text 25
Location (UD#) where same part may be found in system

circuit-card-location-ref
Text 28
UD# or other reference information for replacement part

circuit-reference
Text 27
Documentation reference

module-reference
Text 20
Reference number on knowledge diagrams

node-number
Text 6, Mask N##H#H#, # any digit
Artificially generated number used to track nodes

part-allowance
Integer
Number of a part allowed on board (COSAL or other requirement)

part-number
Text 20
Reference number for part

part-replaced
Boolean
Set if part replaced

parts-on-hand
Integer
Number of a part on board

parts-on-order

Integer
Number of a part on order

95

price
Currency
Price of part

replacement-notes
Text 32
Information for user

stock-number
Text 15
National Stock Number (NSN) for part

usage-date
Date
Date of usage

usage-notes
Memo
Information about usage

usage-number

Text 6, Mask U#HHHHE, # any digit
Artificial number for usage occurrence

96

C.

ENTITY-RELATIONSHIP (E-R) DIAGRAM

97

REPLACEMENT

APPENDIX B. DECOMPOSITION AND DATA FLOW DIAGRAMS

MKS2 FCS MARINTENANCE ADUISOR DECOMPOSITION DIAGRAM
EXPERT SYSTEM DATABASE

MKS2FCSMAES

(1o | 2.8 (30 |
PART DATA STORE SYSTEM
INFO MAINTENANCE USAGE
SUBSYSTEM SUBSYSTEM SUBSYSTEM

Figure B-1 - MK92 FCS MAES DB Decomposition Diagram

98

DECOMPOSITION DIAGRAM

K92 FCS NMAINTENANCE ADVISOR
EXPERT SYSTEM DATABASE 1.0

PART

INFO

SUBSYSTEM
1.1P 1.2P 1.3
BRONSE UPDRTE REPORT
PART SUPPLY PART
INFO STATUS INFO

[1.0 | 1.3.20 13,90
PARTS

REPORT

% FUNCTION ARUAILABLE ONLY TO
SYSTEM ADMINISTRATOR

Figure B-2 - MK92 FCS MAES DB Decomposition Diagram [1.0]

™92 FCS MRINTENRCE ADVISOR OECOMPOSITION DIAGRAN
DPERT SYSTEN DATABASE 2.0

S
.2
naiNT - D> MAINT PAINT
e
1
| 222 .2.49
we T0 NODE | D PRON
) @vw> | wooes
8Y U0 o w |
x FUNCTION AURILABLE OWLY TO [
SYSTEN AONIN;STRATOR :
2.3.19 » -
ol ParTe PART & PosTS
10 We

Figure B-3 - MK92 FCS MAES DB Decomposition Diagram [2.0]

100

MKS2 FCS MAINTENANCE ADUISOR DECOMPOSITION DIAGRAM
EXPERT SYSTEM DATABASE 3.8

SYSTEM

USAGE

DATA

SUBSYSTEM
3.1P 3.2
ENTER REPORT
USAGE USAGE
DATA DATA

Figure B-4 - MK92 FCS MAES DB Decomposition Diagram [3.0]

101

MKS2 FCS HAINTENANCE ADVISOR
EXPERT SYSTEN DATABASE

CONTEXT DIAGRANM

EXPERT NODE REQUEST
SYSTENM

REQUESTED s \ PARTS INFO
PARTS INFO)
L MK92FCSES
o8
PARTS/SUPPLY
INFO
L) SYSTEM
ADHIN
SYSTEM MAINT
INFO
TECHNICIAN
CUSER)
USER INFO

Figure B-5 - MK92 FCS MAES DB Context Diagram

102

e

LOCAL PaRT INFO

MKS2 FCS MAINTENANCE QDUISOR
EXPERT SYTEM DATAGASE

AOMIN

TECHMICIA

CUBER>

Figure B-6 - MK92 FCS MAES DB System Diagram

PARTS SUPPLY INPUT

1.9
INFO

SYSTEN DIAGRAN

PART DETAILS

N

PART SUPSLY

$TAaTUS QETAILS
RM

OETAILS

SYSTEM PART INKFQ

SYSTEN MRINT
INFO

LOCAL MAINT
INFO

USAGE INFO

REPL MAINT REPLACENENT
INFO
DATA STOM N-R MAINT INFO
MAINTENANCE
SUBSYSTEN ~» NOOE-REPL
NODE MAINT INFO
NODE
PART MAINT
vid .
|
N usece
SUBSYSTEN USAGE INFO

103

USAGE REPORT INFO

1.1
BROUSE
PART SUPPLY PART PART SUPPLY
STATUS INQUIRY INFO DETAILS
TECHNICT
CuseR)
PART STATUS
? OETAILS
PART SUPPLY PART DETAILS
STATUS CHANGES

1.2

UPDATE

SUPPLY

sTaTUS e Y

PART RELATED
wos
PART REPORTS
REPORT
PART
INFO -
SYsTEN
AONTN <
SYSTEN PART REPORTS

Figure B-7 - DFD: Part Info Subsystem [1.0]

DFD - REPORT PART INFO [1.3]

1.3.1P
NOT ON

REPORT
NOH RELATED UDs

PART NOH REPORT

TECHNICIAN
C(USER)

NOH PART#S

PART ON ORD REPORT PARTS ON

ADMIN

ON ORD RELATED UDs

PARTS UNDER
STOCK REPORT

1.3.3P ON ORDER PART DETAILS

S$TOCK
REPORT

UNDER STOCK PART#S

Figure B-8 - DFD: Report Part Info [1.3]

105

DFD - DAT&# STORE MAINTENANCE

SUBSYSTEN (2.0)
NODE RELATED I
REPL DETAILS REPLACENEN"
SYSTEN NODE
MAINT INFO (
g£.1
—
SYSTEN MAINTENANCE !
orax > S| e
WODE MAINT DETAILS
] e KT ek ot
LOCAL NODE HODE-REPL
MRINT 1NFO

UD RELATED NODE DETAILS

\D RELATED PART DETAILS

TECHNICIAN
CUSER)

D> MAINT

: PART

T MAINT DETAILS

> | NDE-REPL
PART RELATED
N-R DETRILS

PART RELATED UD DETAILE

Figure B-9 - DFD: Data Store Maintenance Subsystem [2.0]

106

OELETED WD DELETED WD N-R
CFROM NODE>

Figure B-10 - DFD: Node Maintenance [2.1]

107

OFD - REPLACEMENT (<UD
MAINT [2.22

SYSTEM
ADMIN’

TECHNICIAN
CUSER)

ADMIN

uD TO ADD
W/NODES
UD TO DELETE
W/ NODES 2.2.4P
uw
FROM NODES
C(BY UD>

PART BY UD CHANGES

NEW UD DETAX
REPLACETENT
DELETED UD
NODE-REPL
NODES FOR
DELETED UD

Figure B-11 - DFD: Replacement (UD) Maintenance [2.2]

108

PART
SYSTEN CHANGES
ADNIN
PART
REPLACETENT
REPLACEMENT
TECHNICIAN PARTS
CUSER) CHANGE
PARTS
CHANGE
SYSTEN PARTS ———
CHANGES PART
DELETED
PART
SYSTEM DELETED 2.3.3°
SYSTEM PARTS OELETE
ADMIN PARTS .
& uDs REPLACEMENT
DELETED REPL
W PART
SYSTEM ADD PARTS
PART
‘ 2.3.40 AODED PART
TECHNICIAN AOD
CUSER) PARTS

LOCAL ADD PARTS

Figure B-12 - DFD: Part Maintenance [2.3]

109

OFD - SYSTEM USRGE
SUBSYSTEM (3.01

3.1P

USAGE USAGE DETAILS INPUT

DATA
)

LOCAL USAGE INFO " P USAGE

TECHNICIAN
wsery [

USAGE REPORT DETRILS

Figure B-13 - DFD: System Usage Subsystem [3.0]

110

DFD - REPORT USARGE DATA [3.21

REPORT
USAGE
PERIODIC
USAGE
TECHNICIAN DETAILS
(USER) [€— PERIOBIC USAGE
REPORT
G
ANNUAL USAGE
. REPORT —
e
3.2.2P
N REPORT USAGE
€¢—— peTAILS
| N

Figure B-14 - DFD: Report Usage Data [3.2]

m

APPENDIX C - MENU HIERARCHY AND SCREENS

A. MENU HIERARCHY
References to Decomposition Diagram are provided in {}

USER MENU
Part Information (Part Info) Submenu {1.0}
Browse Part Supply Info (Supply) {1.1P}
Update Part Supply Status (Update) {1.2P}
Part Information Reports (Report) Submenu {1.3}
Report Parts Not On Hand (Not on Hand) {1.3.1P}
Report Parts On Order (On Order) {1.3.2P}
Report Parts Under Stock (Under Stock) {1.3.3P}
Usage History (Usage) Submenu {3.0}
Enter Usage Data (Enter) {3.1P}
Periodic Usage Report (Periodic) {3.2.1P}
Annual Report (Annual) {3.2.2P}
DB Maintenance (DB) Submenu {2.0}
Update Circuit Card Info (Ckt Card) Submenu <2A>
Select By Node# (By Node#) {2.1.1P}
Select By UD# (By UD#) {(2.2.1P}
[Change UD#] {2.2.2P}
Update UDs (Submenu) <2B>
Add UDs to Nodes (Add) Submenu <2B-1>
Select by UD# [Add New UD]{2.2.3P}
Select by Node# [Add New UD]{2.1.5P}
Delete UDs from Nodes (Delete) Submenu <2B-2>
Select by UD# {2.2.4P}
Select by Node# {2.1.6P}
Update Part Info (Part) Submenu <2C>
Update Info by Part# {2.3.1P}
[Change Part#] {2.3.2P}
Add Parts {2.3.4P}
Delete Parts {2.3.3P}

ADMINISTRATION MENU
Part Information (Part Info) Submenu {1.0}
Browse Part Supply Info (Supply) {1.1P}

Update Part Supply Status (Update) {1.2P}

112

Part Information Reports (Report) Submenu {1.3}
Systems Part List (Parts List) {1.3.4P)
DB Maintenance (DB) Submenu {2.0}
Update Circuit Card Info (Ckt Card) Submenu [2A)
Select By Node# (By Node#) {2.1.1P}
[Change Node#] {2.1.2P)
Select By UD# (By UD#) {2.2.1P}
[Change UD#] {2.2.2P}
Update UDs (Submenu) [2B]
Add UDs to Nodes (Add) Submenu [2B-1]
Select by UD# [Add New UD] {2.2.3P}
Select by Node# [Add New UD] {2.1.5P}
Delete UDs from Nodes (Delete) Submenu [2B-2]
Select by UD# {2.2 4P}
Select by Node# {2.1.6P}
Update Part Info (Part) Submenu [2C]
Update Info by Part# {2.3.1P}
[Change Part#] {2.3.2P}
Add Parts {2.3.4P}
Delete Parts {2.3.3P}
Node Info [2D]
Add Nodes {2.1.3P}
Delete Nodes {2.1.4P}
Usage History (Usage) Submenu {3.0}
To Be Determined

[] Additional functions provided on screen, vice on menu
<> Combination menus referenced in Process Logic section (Appendix D, Section A)

113

B. MENU SCREENS

MKS2 FCS MAES Database

MK 92 FCS Maintenance Advisor Expert System
Database

User Version I Ao Administrative Version

Exit Program

Figure C-1 - Opening Menu

MKS2 FCS MAES DB Main User Menu

IMK 92 FCS MAES Database

[Part Information

I§ystem Usage Historical Data

lDatabase Maintenance

IExit Database |

Figure C-2 - User Menu Screen

114

Part Information Menu

IMK92 FCS MAES DB - Part Information

_ P;wsn Supply Information for Part

mm?ﬁan Supply Status

Fan Information Reports
[FLum to Main Menu

Figure C-3 - Part Information Submenu

Part Report Menu

[MK982 FCS MAES DB - Part Information
{Part Reports

Est Parts Not on Hand

Est Parts On Order

Est Parts Under Allowance Level

Betum to Part Information Menu

rRetum to Main Menu

Figure C-4 - Part Reports Submenu

115

Usage Menu

IMK92 FCS MAES Usage Data

IEnter Usage Information

Ei‘epon Usage Data

Annual Data Report and Archive

lRetum to Main Menu

Figure C-5 - Usage Submenu

116

DB Maintenance Menu

MKS2 FCS MAES Database Maintenance |

"”"“"""""“""‘" Update Circuit Card/Node Information |

[Md UDs to/Delete UDs from Nodes]
[Update Part Information]
Fotum to Main Menu I

Figure C-6 - DB Maintenance Submenu

Select Type of Change

Select Type of Change Required to
Circuit Card / Node Information

[Choose one of Cancet |

Select By Nodel:

- P-mm.ocmnua
Eltor uPnATE

UD#. Pastlh, AR Locdion. Doc.
Reference, Notes
D NODE# UPDATE

—i Retum to Previous Menu

Figure C-7 - Update Selection Screen

117

MK92 FCS MAES DB Main Admia Menu

IMK92 FCS MAES Database - Administrative Version

e
e oo Peoien oo

Figure C-8 - Administrator (Admin) Menu

Part Information Menu - Admin

IMK92 FCS MAES DB - Part Information (Admin)

— [Browse Part Supply Information
— IUpdatc Part Information

[ﬁn information Reports

Fum to Main Menu

Figure C-9 - Part Information (Admin) Submenu

118

Part Report Meny - Admin

MKS82 FCS MAES DB - Part Information (Admin

Part Reports

[Cist Parts in System w/ UDs

_ Fetum to Part information Menu
e

Figure C-10 - Part Report (Admin) Submenu

119

DB Maint Menu - Admin

IMK92 FCS MAES Database Maintenance - Admin

deate Circuit Card/Node Information

Add UDs ta/Delete UDs from Nodes

IUpdato Part Information

Add Nodes to /Delete Nodes from System
rﬂaum to Main Menu

Figure C-11 - DB Maintenance (Admin) Submenu

Select Type of Change - Admin

Select Type of Change Required to
Circuit Card / Module Information

[Choose one o Cancet |

Select By Node#t:

Nodeit, Partit, Ak Location,
D ocumentation Reference,
N D# UPDATE

UD#. Part#t, Ak Location, Doc.
Reference, Notes
0 NODE# UPDAT

Figure C-12 - Update Selection (Admin) Screen

120

APPENDIX D - PROCESS LOGIC, SYSTEM FORMS, AND SYSTEM REPORTS

A. PROCESS LOGIC

Program START
Activate OPENING MENU procedure

OM OPENING MENU: (procedure)
Activate OPENING Menu - Display Menu
On Command Button Push, Run procedures
(USER MENU, ADMIN MENU, EXIT)

1. User Procedures

UM USER MENU: (procedure)
Activate USER Memu - Display Menu
On Command Button Push, Activate procedures
(PART INFO MENU - USER, USAGE HISTORY MENU, DB MAINT
MENU -USER, EXIT)

U1.0 PARY INFO MENU- USER: (procedure)
Activate PART INFO - USER Memu - Display Menu
On Command Button Push, Activate procedures
(SUPPLY, UPDATE SUPPLY INFO, REPORT PARTS INFO MENU -

USER, RETURN)

Ul.1 SUPPLY: (procedure)
Activate BROWSE PART form

Input PART# from list selection
On Command Button Push, Activate subprocedures
(LOCATE, CANCEL)

UL1L LOCATE: (procedure)
Activate PART SUPPLY INFO form
Retrieve PART instance WHERE PART# = Form[BROWSE
PART][PART#]
Display PART instance
On Command Button Push, Activate subprocedures
(RETURN)

121

UL1L-R RETURN: (procedure)
Close PART SUPPLY INFO form
Activate USER MENU procedure

U1.1C CANCEL: (procedure)
Close PART SUPPLY INFO form
Activate PART INFO MENU - USER procedure

U1.2 UPDATE SUPPLY INFOQ: (procedure)
Activate UPDATE PART form

Accept PART#
On Command Button Push, Activate subprocedures

(LOCATE(U), CANCEL(U))

Ul.2L LOCATE(U): (procedure)
Check to see if Part# input provided and it exists

if not, display message and Activate UPDATE SUPPLY INFO

procedure

Retrieve PART instance WHERE PART# = Form[UPDATE PART][PART#]
Activate PART SUPPLY INFO UPDATE form
Display PART instance
Accept changes to Part information

On Command Button Push, Activate subprocedures

(MORE, RETURN(L), ISSUE, ORDER, RECEIVE)

U1.2L-M MORE: (procedure)

Update PART instance WHERE PART# = Form[PART SUPPLY
INFO UPDATE][PART#]

Close PART SUPPLY INFO UPDATE form

Activate UPDATE SUPPLY INFO subprocedure

U1.2L-R RETURN(L) (procedure)

Update PART instance WHERE PART# = Form{PART SUPPLY
INFO UPDATE][PART#]

Close PART SUPPLY INFO UPDATE form

Activate PART INFO MENU - USER procedure

U1.2L-I ISSUE (procedure)

Activate ISSUE PARTS form

Set initial number of parts issued to 0

Accept update to number of parts issued

On Command Button Push, Activate subprocedures
(UPDATE(Y), CANCEL(I))

122

UL.2L~IU UPDATE(): (procedure)

Calculate number of parts on hand: Subtract number of
parts issued from number of parts on hand

Close ISSUE PARTS form

U1.2L-IC CANCEL(I): (procedure)
Close ISSUE PARTS form

U1.2L-O QORDER (procedure)
Activate PARTS ORDERED form

Set initial number of parts ordered to 0
Accept update to number of parts ordered
On Command Button Push, Activate subprocedures

(UPDATE(O), CANCEL(O))

U1.2L~-0U UPDATE(Q): (procedure)

Calculate number of parts on order: Add number of parts
ordered to number of parts on order

Close PARTS ORDERED form

UL.2L-0C CANCEI(O): (procedure)
Close PARTS ORDERED form

U1.2L-R RECEIVE (procedure)
Activate PARTS RECEIVED form

Set initial number of parts received to 0
Accept update to number of parts received
On Command Button Push, Activate subprocedures

(UPDATE(R), CANCEL(R))

U1.2L-RU UPDATE(R): (procedure)
Calculate number of parts on order: Subtract number of

parts received from number of parts on order
Calculate number of parts on hand: Add number of parts
received to number of parts on hand
Close PARTS RECEIVED form

U1.2L-RC CANCEL{(R): (procedure)
Close PARTS RECEIVED form

UL.2C CANCEL(U)
Close UPDATE PART form

Activate PART INFO MENU -USER procedure

123

U1.3 REPORT PARTS INFO MENU - USER: (procedure)
Activate PARTS REPORT MENU - USER form

On Command Button Push, Activate subprocedures
(REPORT PARTS NOT ON HAND, REPORT PARTS ON ORDER,
REPORT PARTS UNDER STOCK, PREVIOUS (RPU),
RETURN TO MAIN(RRU))

U1.3.1 REPORT PARTS NOT ON HAND (procedure)
Query PART for PARTS NOT ON HAND:

Select Part#, Number Parts Un Hand WHERE
Number Parts On Hand = 0
Query PART and REPLACEMENT for UDs FOR PARTS NOT ON HAND:
Select Part#, UD# WHERE Number Parts On Hand = 0
Display PARTS NOT ON HAND report from PARTS NOT ON HAND
query
Display PARTS NOT ON HAND subreport from UDs FOR PARTS NOT
ON HAND query
WHERE PART# for PARTS NOT ON HAND subreport = PART# for
PARTS NOT ON HAND report
On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) **
** Note: these are Access procedures, and are not covered further

UL.3.2 REPORT PARTS ON ORDER (procedure)
Query PART for PARTS ON ORDER:

select Part#, Number Parts On Order WHERE
Number Parts On Order > 0
Query PART and REPLACEMENT for UDs FOR PARTS ON ORDER:
select Part#, UD# WHERE Number Parts On Order > 0
Display PARTS ON ORDER report from PARTS ON ORDER query
Display PARTS ON ORDER subreport from UDs FOR PARTS ON ORDER
quecy
WHERE PART# for PARTS ON ORDER subreport = PART# for
YARTS ON ORDER report
On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) **
** Note: these are Access procedures, and are not covered further

124

U1.3.3 REPORT PARTS UNDER STOCK (procedure)
Query PART for PARTS UNDER STOCK:

select Part#, Allowance, Parts On Hand, Parts On Order WHERE
(Number Parts On Hand < Allowance)
Display PARTS UNDER STOCK report from PARTS UNDER STOCK
query
On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) **
** Note: these are Access procedures, and are not covered

U1.3P PREVIOUS(RPU) (procedure)
Close PARTS REPORT MENU - USER form

Activate PART INFO MENU- USER procedure

U1.3R RETURN TO MAIN (RRU) (procedure)
Close PARTS REPORT MENU - USER form

Activate USER MENU procedure

ULOR RETURN
Close PART INFO - USER menu

Activate Uli.” . 4ENU procedure

U. 3 DB MAINT MENU - USER (procedure)
Activate DB MAINT - USER Menu - Display Menu
On Command Button Push, Activate procedures
(CKT CARD(U), UD(U), PART INFO(U), RETURN(DU))

U2.A CKT CARD(U)) (procedure)
Activate SELECT CHANGE Menu - Display Menu
On Command Button Push, Activate procedures
(BY NODE#(U), BY UD#, RETURN)

U2.1.1 BY NODE#(U) (procedure)
Activate INPUT NODE# form

Accept Node# input
On Command Button Push, Activate procedures

(CANCEL(NU), LOCATE(NU))

125

U2.1.1L LOCATE(NU) (procedure)
Retrieve NODE, NODE-REPL, and REPLACEMENT instances

WHERE Node# = Form[INPUT NODE#][NODE#]
Check to see if Node# input provided and it exists
if not, display message and Activate BY NODE# procedure
Activate UPDATE NODE-REPLACEMENT - USER forms
Display NODE instance and first NODE-REPL and REPLACEMENT
instances
Accept changes to Node and Replacement information
On Command Button Push, Activate procedures

(CLEAR(NR), MORE(NRU), EXIT(NRU), FWD(NR),
BACK(NR))

U2.1.1L-C CLEAR(NR) (procedure)
Cancel changes to Node and Replacement information

U2.1.1L-M MORE(NRU) (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# = Form[UPDATE NODE-REPLACEMENT-
USER][NODE#] AND UD# = Form[UPDATE NODE -
REPLACEMENT (sub)][UD#]

Close UPDATE NODE-REPLACEMENT forms

Activate BY NODE#(U) procedure

U2.1.1L-E EXIT(NRU) (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# = Form[UPDATE NODE-REPLACEMENT]
[NODE#] AND UD# = Form[UPDATE NODE -
REPLACEMENT-(sub)J[UD#]
Close UPDATE NODE-REPLACEMENT - USER forms
Activate CKT CARD procedure

U2.1.1L-F FWD(NR) (procedure)
Display next NODE-REPL and REPLACEMENT instances for
NODE#

U2.1.1L-B BACK(NR) (procedure)
Display previous NODE-REPL and REPLACEMENT instances for

NODE#

U2.1.1C CANCEL(NU) (procedure)
Close INPUT NODE# form

Activate CKT CARD(U) procedure

126

U2.2.1 BY UDP#(U) (procedure)
Activate INPUT UD# form
Accept UD# input
On Command Button Push, Activate procedures

(CANCEL(UDU), LOCATE(UU))

U2.2.1C CANCEL(UDU)
Close INPUT UD# form

Activate CKT CARD(U) procedure

U2.2.1L LOCATE(UD)
Retrieve REPLACEMENT instances

WHERE UD# = Form[INPUT UD#][UD#]
Check to see if UD# input provided and it exists

if not, display message and Activate BY UD# procedure
Activate UPDATE UD# - REPLACEMENT form
Display REPLACEMENT instance
Accept changes to Replacement information

On Command Button Push, Activate procedures

(UPDATE UD#, CLEAR(UD), EXIT(UDU), MORE(UD))

U2.2.1L-U UPDATE UD# (procedure)

Activate CHANGE UD¥# form

Accept UD# input

Check to see if UD# input provided and it does not already
exist, if not correct display message and Activate
UPDATE UD# procedure

On Command Button Push, Activate procedures

(CANCEL(UD), CHANGE UD#(UD))

U2.2.1L-UC CANCEL(UD) (procedure)
Close CHANGE UD# form

U2.2.1L-UD CHANGE UD#(UD) (procedure)
Accept NEW UD# input
Validate change (Yes/No)
if NO, Close CHANGE UD# form
Activate UPDATE RELATED UD function
Display UPDATE UD# - REPLACEMENT form where
UD# =NEW UD#

U2.2.1L-C CLEAR(UU) (procedure)
Cancel changes to Replacement information

127

U2.2.1L-E EXIT(UDU) (procedure)
Update REPLACEMENT instance where UD# = Form{UPDATE

UD# - REPLACEMENT][UD#]
Close UPDATE UD# - REPLACEMENT form
Activate CKT CARD(U) procedure

U2.2.1L-M MORE(UU) (procedure)

Update REPLACEMENT instance where UD# = Form[UPDATE
UD# - REPLACEMENT]{UD#]

Close UPDATE UD# - REPLACEMENT form

Activate BY UD#(U) procedure

U2.B UPDATE UD(V) (procedure)
Not Yet Designed

U2.C UPDATE PART INFO(U) (procedure)
Not Yet Designed

U2.0-R RETURN(D)) (procedure)
Close DB MAINT - USER MENU

Activate USER MENU

U3.0 USAGE HISTORY MENU (procedure)
Activate USAGE MENU

On Command Button Push, Activate procedures
(ENTER USAGE DATA(U), PERIODIC USAGE REPORT(U), ANNUAL
USAGE REPORT(U), RETURN(HU))

U3.1 SAGE DATA(U) (procedure)
Not Yet Designed

U3.2 PERIODIC USAGE REPORT(V)) (procedure)
Not Yet Designed

U3.3 ANNUAL USAGE REPORT(U) (procedure)
Not Yet Designed

U3.3-R RETURN(HU) (procedure)
Close USAGE MENU

Activate USER MENU procedure

128

2. Administrator Procedures

AM ADMIN MENU (procedure)
Activate ADMIN Menu - Display Menu
On Command Button Push, Activate procedures
(PART INFO MENU - ADMIN, USAGE MENU, DB MAINT MENU -
ADMIN, EXIT ADMIN)

A1.0 PART INFO MENU- ADMIN: (procedure)
Activate PART INFO - ADMIN Menu - Display Menu
On Command Button Push, Activate procedures
(SUPPLY, UPDATE SUPPLY INFO, REPORT PARTS INFO MENU -
ADMIN, RETURN(AR))

Al.1 SUPPLY: (procedure) [SAME AS Ul.1]
Activate BROWSE PART form
Input PART# from list selection
On Command Button Push, Activate subprocedures
(LOCATE(AS), CANCEL(CS))

ALIL LOCATE(AS): (procedure) [SAME AS Ul.1L]
Activate PART SUPPLY INFO form
Retrieve PART instance WHERE PART# = Form[BROWSE
PART][PART#]
Display PART instance
On Command Button Push, Activate subprocedures
(RETURN(AS))

Al.1L-R RETURN(AS): (procedure)
Close PART SUPPLY INFO form

Activate ADMIN MENU procedure

A1.1C CANCEL/(CS): (procedure)
Close PART SUPPLY INFO form

Activate PART INFO MENU - ADMIN procedure

Al1.2 UPDATE SUPPLY INFO: (procedure) [SAME AS Ul.2]
Activate UPDATE PART form

Accept PART#
On Command Button Push, Activate subprocedures

(LOCATE(UA), CANCEL(UA))

129

A1.2L LOCATE(UA): (procedure)
Check to see if Part# input provided and it exists

if not, display message and Activate UPDATE SUPPLY INFO
procedure

Retrieve PART instance WHERE PART# = Form[UPDATE PART][PART#]
Activate PART SUPPLY INFO UPDATE form
Display PART instance
Accept changes to Part information

On Command Button Push, Activate subprocedures

(MORE, RETURN(LA), ISSUE, ORDER, RECEIVE)

A1.2L-M MORE: (procedure) [SAME AS U1.2L-M]

Update PART instance WHERE PART# = Form[PART SUPPLY
INFO UPDATE][PART#]

Close PART SUPPLY INFO UPDATE form

Activate UPDATE SUPPLY INFO subprocedure

AL2L-R RETURN(LA) (procedure)
Update PART instance WHERE PART# = Form[PART SUPPLY

INFO UPDATE][PART#]
Close PART SUPPLY INFO UPDATE form
Activate PART INFO MENU - ADMIN procedure

A1.2L-X ISSUE (procedure) [SAME AS U1.2L-1]

Activate ISSUE PARTS form

Set initial number of parts issued to 0

Accept update to number of parts issued

On Command Button Push, Activate subprocedures
(UPDATE(I), CANCEL(I))

A1.2L-1IU UPDATE(): (procedure) [SAME AS U1.2L-IU]
Subtract number of parts issued from number of parts on hand
Close ISSUE PARTS form

A1.2L-IC CANCEL(D): (procedure) [SAME AS U1.2L-IC]
Close ISSUE PARTS form

A1.2L-O ORDER (procedure) [SAME AS U1.2L-0]
Activate PARTS ORDERED form

Set initial number of parts ordered to 0

Accept update to number of parts ordered

On Command Button Push, Activate subprocedures

(UPDATE(O), CANCEL(O))

130

A1.2L-OU UPDATE(Q): (procedure) [SAME AS Ul.2L-
ou]

Add number of parts ordered to number of parts on order

Close PARTS ORDERED form

A1.2L-0C CANCEL(Q): (procedure) [SAME AS U1.2L-
oC

Close PARTS ORDERED form

A1.2L-R RECEIVE (procedure) [SAME AS U1.2L-R]
Activate PARTS RECEIVED form

Set initial number of parts received to 0

Accept update to number of parts received

On Command Button Push, Activate subprocedures
(UPDATE(R), CANCEL(R))

A1.2L-RU UPDATE(R): (procedure) [SAME AS Ul.2L-
RUJ
Subtract number of parts received from number of parts on
order
Add number of parts received to number of parts on hand
Close PARTS RECEIVED form

A1.2L-RC CANCEL(R): (procedure)[SAME AS U1.2L-
RC]
Close PARTS RECEIVED form

A1.2C CANCEL(UA)
Close UPDATE PART form
Activate PART INFO MENU -ADMIN procedure

A1.3 REPORT PARTS INFO MENU - ADMIN: (procedure)
Activate PARTS REPORT MENU - ADMIN form

On Command Button Push, Activate subprocedures
(SYSTEM PARTS LIST, PREVIOUS(RPA), RETURN TO
MAIN(RRA))

A1.3.1 SYSTEM PARTS LIST (procedure)

Query PART for SYSTEM PARTS:
select Part# WHERE Part# <> Null

Query PART and REPLACEMENT for UDs FOR SYSTEM PARTS:
select Part#, UD# WHERE Part# = Parts list[Part#]

Display SYSTEM PARTS report from SYSTEM PARTS query

131

Display UDs FOR SYSTEM PARTS subreport from UDs for SYSTEM
PARTS query
WHERE PART# for UDs FOR SYSTEM PARTS subreport = PART#
for SYSTEM PARTS report
On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) **
** Note: these are Access procedures, and are not covered further

A1.3P PREVIOUS(RPA) (procedure)
Close PARTS REPORT MENU - ADMIN form
Activate PART INFO MENU- ADMIN procedure

AL3R RETURN TO MAIN (RRA) (procedure)
Close PARTS REPORT MENU - ADMIN form

Activate ADMIN MENU procedure

ALOR RETURN(AR)
Close PART INFO - ADMIN menu

Activate ADMIN MENU procedure

A2.0 DB MAINT MENU - ADMIN (procedure)
Activate DB MAINT - ADMIN Menu - Display Menu
On Command Button Push, Activate procedures
(CKT CARD(A), UD(A), PART INFO(A), RETURN(DA))

A2.A CKT CARID(A) (procedure)
Activate SELECT CHANGE Menu - Display Menu
On Command Button Push, Activate procedures
(BY NODE#(A), BY UD#, RETURN)

A2.1.1 BY NODE#A) (procedure)
Activate INPUT NODE# form
Accept Node# input
On Command Button Push, Activate procedures
(CANCEL(NA), LOCATE(NA))

A2.1.1L LOQCATE(NA) (procedure)
Retrieve NODE, NODE-REPL, and REPLACEMENT instances

WHERE Node# = Form[INPUT NODE#)[NODE#]
Check to see if Node# input provided and it exists

if not, display message and Activate BY NODE# procedure
Activate UPDATE NODE-REPLACEMENT - ADMIN forms

132

Display NODE instance and first NODE-REPL and REPLACEMENT
instances
Accept changes to Node and Replacement information
On Command Button Push, Activate procedures
(UPDATE NODE#, CLEAR(NRA), MORE(NRA),
EXIT(NRA), FWD(NRA), BACK(NRA))

A2.1.1L-N UPDATE NODE# (procedure)

Activate CHANGE NODE# form

Accept NODE# input

Check to see if NODE# input provided and it does not already
exist, if not correct display message and Activate
UPDATE NODE# procedure

On Command Button Push, Activate procedures
(CANCEL(UN), CHANGE NODE#)

A2.2.1L-NC CANCEL(UN) (procedure)
Close CHANGE NODE# form

A2.2.1L-ND CHANGE NODE# (procedure)
Accept NEW NODE# input

Validate change (Yes/No)
if NO, Close CHANGE NODE# form
Activate UPDATE RELATED NODE function
Display UPDATE NODE-REPLACEMENT- ADMIN form
where NODE# = NEW NODE#

A2.1.1L-C CLEAR(NRA) (procedure)
Cancel changes to Node and Replacement information

A2.1.1L-M MORE(NRA) (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# = Form{UPDATE NODE-REPLACEMENT-
ADMIN][NODE#] AND UD# = Form[UPDATE NODE -
REPLACEMENT-ADMIN(sub)][UD#]
Close UPDATE NODE-REPLACEMENT- ADMIN forms
Activate BY NODE# (A) procedure

133

A2.1.1L-E EXIT(NRA) (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# = Form[UPDATE NODE-REPLACEMENT-
ADMIN][NODE#) AND UD# = Form[UPDATE NODE -
REPLACEMENT-ADMIN(sub)}{UD#]
Close UPDATE NODE-REPLACEMENT- ADMIN forms
Activate CKT CARD(A) procedure

A2.1.1L-F FWI(NR) (procedure) [SAME AS U2.1.1L-F]
Display next NODE-REPL and REPLACEMENT instances for
NODE#

U2.1.1L-B BACK(NRU) (procedure) [SAME AS U2.1.1L-B]
Display previous NODE-REPL and REPLACEMENT instances for
NODE#

A2.1.1C CANCEI(NA) (procedure)
Close INPUT NODE# form

Activate CKT CARD(A) procedure

A2.2.1 BY UD#(A) (procedure)
Activate INPUT UD# form
Accept UD# input
On Command Button Push, Activate procedures
(CANCEL(UDA), LOCATE(UDA))

A2.2.1C CANCEIL(UDA)
Close INPUT UD# form
Activate CKT CARD(A) procedure

A2.2.1L LOCATE(UDA)
Retrieve REPLACEMENT instances

WHERE UD# = Form[{INPUT UD#][UD¥#]
Check to see if UD# input provided and it exists

if not, display message and Activate BY UD# procedure
Activate UPDATE UD# - REPLACEMENT form
Display REPLACEMENT instance
Accept changes to Replacement information

On Command Button Push, Activate procedures

(UPDATE UD#, CLEAR(UD), EXIT(UDA),
MORE(UDA))

134

A2.2.11-U UPDATE UD# (procedure)

Activate CHANGE UD# form

Accept UD# input

Check to see if UD# input provided and it does not already
exist, if not correct display message and Activate
UPDATE UD# procedure

On Command Button Push, Activate procedures

(CANCEL(UU), CHANGE UD#)

A2.2.1L-UC CANCEL({UU) (procedure)
Close CHANGE UD# form

A2.2.1L-UD CHANGE UD# (procedure)
Accept NEW UD# input
Validate change (Yes/No)
if NO, Close CHANGE UD# form
Activate UPDATE RELATED UD function
Display UPDATE UD# - REPLACEMENT form where
UD# = NEW UD#

A2.2.1L-C CLEAR(UD) (procedure)
Cancel changes to Replacement information

A22.11L-E EXTT(UDA) (procedure)

Update REPLACEMENT instance where UD# = Form[UPDATE
UD# - REPLACEMENT][UD#]

Close UPDATE UD# - REPLACEMENT form

Activate CKT CARD(A) procedure

A2.2.1L-M MORE(UDA) (procedure)

Update REPLACEMENT instance where UD# = Form[UPDATE
UD# - REPLACEMENT][UD#]

Close UPDATE UD# - REPLACEMENT form

Activate BY UD#(A) procedure

A2.B UPDATE UIXA) (procedure)
Not Yet Designed

A2.C UPDATE PART INFO(A) (procedure)
Not Yet Designed

135

A2.0-R RETURN(DA) (procedure)
Close DB MAINT - ADMIN MENU

Activate ADMIN MENU

A3.0 USAGE HISTORY MENU(A) (procedure)
Activate USAGE MENU

Not Yet Designed

l 136

3. System Functions

Function UPDATE RELATED UD

SELECT all NODE instances

Old UD# = Form[Change UD#][UD#]

SELECT all REPLACEMENT instances WHERE UD# = Old U'D#
store in TEMP entity

UPDATE all instances in TEMP entity
UD# = New UD#

INSERT into REPLACEMENT all instances in TEMP entity

DELETE all instances in TEMP entity

Loop Until Done
FIND NODE-REPL instances WHERE UD# = Old UD#
UPDATE UD# to New UD#

End

Form[UPDATE UD# - REPLACEMENT][UD#] = New UD#

Function UPDATE RELATED NODE

Old Node# = Form{Change Node#][Node#]

SELECT all NODE instances WHERE Node# = Old Node#
store in TEMP entity

UPDATE all instances in TEMP entity
Node# = New Node #

INSERT into NODE all instances in TEMP entity

DELETE all instances in TEMP entity

Loop Until Done
FIND NODE-REPL instances WHERE Node# = Old Node#
UPDATE Node# to New Node#

End

Form[Update Node-Replacement -Admin][Node#] = New Node#

137

B. SYSTEM FORMS

Browse Part Supply Information

Browse Part Supply Information
P] 2365 £

Praess Cancsl to Retum to Menu

Figure D-1 - Browse Part Supply Information Form

Part Supply inlermalion
Pats: [3Ts‘1'94'51'——i

Press Return to Locate Another Part
or to Return to Main Menu

Figure D-2 - Part Supply Information Form

138

Part Supply Information Update

Update Supply Status For Parts

Pat 8 {

Type in Part Number and Press Locate or
Press Cancel to Retum to Menu

Figure D-3 - Part Supply Information Update Form

“Part Supply Information
Part Supply information :
Update

! <— Type In
Pant®: |3151940-1 : O to
NSN: 127 Information

Use Buttons Below to

Update Quantities V

Pats Issued

Paits Ordesed

Parts Received

Figure D-4 - Part Supply Information Update Form

139

B

Parts Issued

input Quantity of Parts Issued

Quanty Issved E

Type in Guantity of Pant Issued and Press
Update or Press Cancel

Figure D-$ - Parts Issued Form

B

Parts Ordered

Input Quantity of Parts Ordered

Quantity Oidesed [

Type in Quantity of Part Ordered and
Press Update or Press Cancel

Figure D-6 - Parts Ordered Form

.

Parts Issued

Input Quantity of Parls Received

Quantity Received | |

Type in Quantity of Part Received and
Press Update or Press Cancel

Figure D-7 - Parts Received Form

140

E input Node®

Input Node# For Update

Node 8 | {

Type in Node Number and Press Locate
or Press Cancel to Retum to Menu

Figure D-8 - Input Node# Form

pd Ndelment

Update Node and Replacement Information

'‘Buttons to look at : —
(As Applicable] uUDS: [AI/AFIAAD I

Documentation Reference: [570-13-20

Pan: [5381406.1
ARemate Location: |NONE
Notes:

Figure D-9 - Update Node-Replacement Information

141

input UDZ

Input UD# For Update

Type in Node Number and Press Locate
or Press Cancel to Retum to Menu

Figure D-10 - Input UD# Form

Update UD®

Update UD# or Replacement
Information

- (.

UDS: {1859]

Push to Update UDE | mewesswessnsssssssmsmme
Parthh: !123‘5 H

ARermnale Location: [0666

Notes: [

Figure D-11 - Update UD# - Replacement Form

142

F Change UD# ?

input New UD#

oKUD & %8 NewtD# |

Type in New UD Number and Change UD# or
Press Cancel to Retum to Previous Screen

Figure D-12 - Change UD# Form

N 143

Update Node-Replacement

Updale Nde aod Repineemant infmalinn

Nodew: NOOE | [PushioUpdate Nodel 0]
Module Ret: [SH173C i -

| e
Use Bultons (o look at

s Zoptoatel UDE: {41/AF1AN2

Documentation Reference: F!?-O-13~20

Pats: [5381406-1
ARenate Locationc INQ&{g
Notes:

Figure D-13 - Update Node-Replacement (Admin) Form

Change_o S

input New Node#
OidNode® |NOOE | NewNodeS |

Type in New Node Number and Change Node#
or Press Cancel to Retum to Previous Screen

Figure D-14 - Change Node# Form

144

C. SYSTEM REPORTS

Parts Not On Hand
06-Aar-94

Parté: 3151940-1

UD#: 412/A1A7-K22
UD#: 432/A1A7-K22

Part#: 5381390-1

° UD#: 441/A3F1-A/13

Part#: 5381406-1

UD#: 441/A3F1-A/12

Part#: 5399983

UD#: 412/A1AS5-A9
UD#: 432/A1AS5-A9

Figure D-15 - Parts Not On Hand Report

145

Parts On Order

06-Mar-94

Part#: 12345

UD#: 2559

On Order:)

Part#: 5399968-2

UD#: 412/A1A8
UD#: 432/A1A8

On Order: 2

Figure D-16 - Parts On Order Report

146

Parts Under Allowance

06-Mar-94
Parth: 5399968-2
Part allowance: 4
On Hand: 2
On Order: 2

Figure D-17 - Parts Under Stock Report

147

Complete Parts Listing for System

06-Mor-94

Part:

Part#:

Parté:

Parti:

Part#:

Parth:

Partr:

13345

Ubw: 2559
3144961

UDw: 403/PAN D-V1]
Ub#: 423/PAND-V1]
3145464-3

UDW: 403/PAN D-A/02
UDw: 423/PAN D-A/02

(71

14844

©

UD#: 403/PAN D-S2
UD#: <23/PAND-S2

3151940-]

UbW: 412/A1A7-K22
UDM: 432ALAT-K22

3154151

UD#: 403/PAN D-S50
UDw: 423/PAN D-550

5299728-1

UDW: 432/A1A6-FL3

Figure D-17 - System Parts List Report

148

APPENDIX E. IMPLEMENTATION OF PROCESS LOGIC

A. STANDARD METHODS OF PROCESS LOGIC IMPLEMENTATION

"Accept ..." refers to a form with an unbound text box which will accept user input.

*Accept changes to..." updates the record when changes are made in a bound text box, in
a form. This update is actually automatically performed, unless actions are taken to
prevent it from happening.

The "Activate ... menu” or "Activate... form" is what happens when a command button
is "pushed” and macro opens a form. The "On Push” property is used to invoke a
macro which performs the OpenForm action. The name of the form must be
included in the arguments, and other arguments may also be used. The "Activate ...
form WHERE [Item] = Form![FormName]! [Form Item]" is used in "Locate"
actions to locate a particular record of interest, where the form(input) item is
compared against the items in the table on which the activated form is based.

*Calculate number of ..." uses a macro with the RunCode action to perform the required
calculations. The procedure executed by this action first checks to see if the number
entered by the user is a positive number, and if it is not, a message box is displayed
and the user is returned to the entry screen. If the entry is a positive number then
calculations are performed on the values in the appropriate fields.

*Check ... input provided and it exists" process checks to see if input is actually
provided and it exists as data in the field and table specified, and then displays a
message if it doesn't. This process uses both a macro and a Access Basic procedure.
The "Locate" button first performs the OpenForm action, attempting to locate the

149

key value the user has placed into the text box. If no match is found, Access actually
brings up a record with a null value in its key field. The next action in the macro is
RunCode which runs the procedure CheckEmpty...() which compares the value in
the record displayed to see if the key is null, and if it is, a message box is created
with a message and a command button. This command button only allows the
function to continue to the next statement therein, which is to invoke a macro. This
macro then performs an OpenForm action on the original input screen so the user
may try another input value if an error was made or cancel the action.

"Close...form" uses the Close action in a macro with the argument being the name of the
form which will be closed.

"Display ... instance" is actually part of the same implementation process as "Retrieve” or
"Activate WHERE," since when Access retrieves a record using the OpenForm
command with the WHERE CONDITION, it displays that instance in the form
which has been opened.

"Display ... report from ... query" uses the macro action OpenReport with the
arguments of the Report Name the "Print Preview” view. The report's source is the
specified query. "Display ... subreport..." uses similar actions, however this report
is displayed within another report and is invoked by the property of the subreport
control on the main report. In addition, the statement "(Field) for ... report"”
designates the field to be used for the Link Master /Link Child Fields properties.

"Display next... instances for ..." uses the macro action ScrollDown to move to the next
record in a group of records.

"Display previous ... instances for ..." uses the macro action ScrollUp to move to the

previous record in a group of records.

150

"Input® generally refers to the selection of an item from a list or direct user input into the
Text Box of an unbound form.

*Query... for (Query Name), select... WHERE ..." uses a query designed in the QBE
environment to implement a query which looks at specified tables to produce a query
of name Query Name. Specified fields are displayed and WHERE designates the
criteria used for the selection of records.

"Retrieve... instance WHERE...” is implemented in the same manner as "Activate...form
WHERE ..." process covered above.

"Retrieve...(related tables) instances WHERE..." is implemented using a subform/form
combination which retrieves records related to the main record through the Link
Fields in subform control. If

"Set initial value to..." uses the SetValue action in a macro, with the arguments of the
field, and the specific value of this field to which it will be set. .

151

B. APPLICATION OBI=CTS

1. APPLICATION TABLES AND FIELDS

RYT W/ FIE SE IMPLEME D
NODE - used to store Node# and a drawing reference
FIELDS: NODE#, MODULE REF
NODE-REPL - used as intersection between NODE and REPLACEMENT
also contains a documentation reference figure for that
combination of Node# and UD#
FIELDS: NODE#, UD#, CKT REF

REPLACEMENT - used to store UD# related info such as Part# and an
Alternate Location for that same part
FIELDS: UD#, PART#, ALT LOC, NOTES
PART - stores supply information about a part

FIELDS: PART#, NSN, PRICE, ALLOWANCE, PARTS ON HAND
PARTS ON ORDER

Y TAB
INX - Used for DDE Query - stores Node number
FIELDS: NODE#

NEWTX - Used for DDE Query - stores results of Make Table query
FIELDS: UD#, PART#, ALT LOC, CKT REF, NOTES

TempNode (same structure as NODE, empty, used by SQL Update)
TempNode-Repl (same structure as NODE-REPL)
TempReplacement (same structure as REPLACEMENT)

PartsList - used for System Parts Report
FIELDS: PART#

2. APPLICATION QUERIES

QUERIES

Get Supply Info - Gets information for Browse Parts Supply Information process
TABLES: PART

152

Parts Not On Hand - Finds parts for which Parts On Hand = 0 for Parts Not On
Hand Report
TABLES: REPLACEMENT —- PART

Parts Not On Hand2 - Used for subreport of Parts Not On Hand Report,
lists UD#s
TABLES: REPLACEMENT —- PART

Parts On Order - Finds parts for which Parts On Order > 0 for Parts On Order

Report
TABLES: REPLACEMENT <—— PART

Parts On Order2 - Used for subreport of Parts On Order Report, lists UD#s
TABLES: REPLACEMENT <-— PART

Parts Under Stock - Finds parts for which On Hand amountt is less than
allowance for Parts Under Stock Report
TABLES: PART

System Parts - Gets list of parts for System Parts List report
TABLES: PartsList

System Parts List - ACTION QUERY - Makes table of Part#s
TABLES: REPLACEMENT

System Parts - Gets list of UD#s for Parts for System Parts List subreport
TABLES: PartsList—>REPLACEMENT

1XQ - ACTION QUERY - Makes table of Parts Info for expert system request
TABLES: INX —NODE-REPL -— REPLACEMENT

3. APPLICATION REPORTS

R- Parts Not On Hand - Reports Parts which are not on hand and may require ordering

with their respective UD#s
SOURCE: Parts Not On Hand (query)

Parts Not On Hand2 - subreport for Parts Not On Hand report

SOURCE: Parts Not On Hand2 (query)

153

-

R-Parts on Order - Reports Parts which are on order with their respective UD#s
SOURCE: : Parts On Order (query)

R-Parts On Order2 - subreport for Parts On Order report
SOURCE: Parts On Order2 (query)

R-Parts Under Stock - Reports Parts which are under allowance level
SOURCE: Parts Under Stock (query)

R-System Parts - Reports all Part#s in System, and their respective UD#s
SOURCE: System Parts (query)

R-System Parts2 - subreport for System Parts report
SOURCE: System Parts2 (query)

4. APPLICATION FORMS: CONTROLS, PROCESSES, AND
PROPERTIES

1Update Node-Repl - Update Node-Repl Form from NODE - No Node# Update
RECORD SOURCE: NODE

BUTTONS: On Push

[Clear] Update Macros. Clear - Cancel Changes

[Exit] Exit2 - Exit Form and Save

[More} More - Save and request another Node-Repl
SPECIAL CHARACTERISTICS:

SUBFORM - Source: 1Update Node-Repl(sub)
Link Master/Child Field = Node#

1Update Node-Repl M - Update Node-Repl Form from NODE incl. Update Node button
RECORD SOURCE: NODE

BUTTONS: On Push
[Clear] Update Macros. Clear - Cancel Changes
[Exit] Exit2 - Exit Form and Save
[More] More - Save and request another Node-Repl
*1 Change Node -Opens form to input new Node#
SPECIAL CHARACTERISTICS:

SUBFORM - Source: 1Update Node-Repl(sub)
Link Master/Child Field = Node#

154

1Update Node-Repl (sub) - View UD#s related to node, update Doc Ref info
RECORD SOURCE: NODE-REPL

BUTTONS: On Push
[Fwd] Update Macros. Scroll Down - Move to Next UD#
[Back] Scroll Up - Move to Previous UD#
SPECIAL CHARACTERISTICS:

UD¥# - Locked to prevent inadvertent change must use Change UD#
Node# not on form (on master form)
SUBFORM - Source: 1Update Repl (Sub Sub)

Link Master/Child Field = UD#

1Update NR-UD - Used to update UD#, Replacement info
RECORD SOURCE: REPLACEMENT

BUTTONS: On Push
[Clear] Update Macros. Clear - Cancel Changes
[Exit} Exit UD - Save and Exit Form
[More] More UD - Save and request another UD#
*] Change UD - Use to change UD to maintain

referential integrity across related tables

1Update Repl (Sub Sub) - Subform - REPLACEMENT info
RECORD SOURCE: REPLACEMENT
BUTTONS: On Push
None

DB Maint SWBD M - Admin DB Maintenance Menu Form
RECORD SOURCE: None

BUTTONS: On Push
[Ckt Card] DB-Maint SWBD - M.Ckt Card - Opens Select Change Memu
[Update UDs] Update UDs - Not implemented
[Part Info) Part Info - Not implemented
[Return] Return to Main - Return to Main Menu

DB Maint SWBD U - User DB Maintenance Menu Form
RECORD SOURCE: None

BUTTONS: On Push
[CktCard] DB-Maint SWBD - U. Ckt Card - Opens Select Change Menu
[Update UDs] Update UDs - Not implemented
[Part Info] Part Info - Not implemented

[Return] Return to Main - Return to Main Meau

155

MK92 Main Switchboard - Maint - Admin Main Menu
RECORD SOURCE: None

BUTTONS: On Push
[Part Info] MK92 Main - M. Open Parts M - Opens Part Info Menu
[Usage] Open Usage M - Opens Usage Memu
[DB] Open DB Maint-M - Opens DB Maint Menu
[Exit] Exit - Exits to Access/Opening

MK92 Main Switchboard - User - User Main Meau
RECORD SOURCE: None

BUTTONS: On Push
[PartInfo] = MK92 Main - U. Open Parts - Opens Part Info Menu
{Usage] Open Usage - Opens Usage Menu
[DB] Open DB-Maint U - Opens DB Maint Menu
(Exit) Exit - Exits to Access/Opening or Quits in Runtime

Node Change - used in Node-Rep! update
RECORD SOURCE: NODE

BUTTONS: On Push
[Cancel] Update Macros. Cancel Node Change - Cancels Change
[Change Node#] Change Node3 - Changes Node# in NODE and

NODE-REPL records
Node# Input2 - used in Node-Repl update

RECORD SOURCE: None

BUTTONS: On Push
[Cancel] Update Macros. Exit - Cancels and returns to previous screen
[Locate] Find Node2 - Used to Locate correct Node, Node-

Repl, and Replacement records

Node# Input2 M - used in Node-Repl update Admin
RECORD SOURCE: None

BUTTONS: Tush
[Cancel] Update Macros. Exit M - Cancels and returns to prev screen
[Locate] Find Node2 M - Used to Locate correct Node, Node-

Repl, and Replacement records

Not Implemented - used by SWBD / buttons not implemented
RECORD SOURCE: None
BUTTON: On Push
[Return] Close NI - Closes this form and retumns to previous form

156

Opening SWBD - Opening Administrator Menu
RECORD SOURCE: None ‘

BUTTONS: On Push
[User] Opening SWBD. Open User - Opens Main User Menu
[Admin] Open Maint - Opens Main Admin Menu
[Exit] Close - Exits to Access Database

Part Info SWBD - for user to get Part Info screens/reports
RECORD SOURCE: None

BUTTONS: On Push
{Supply] Part Info SWBD. Supply - Browse Part Supply Info
[Update] Update - Update Part Supply Info
{Report] Report - Part Supply Info Reports
[Return) Return to Main - Retums to Main Menu

Part Info SWBD M - to get Part Info screens/reports for Administrator
RECORD SOURCE: None

BUTTONS: On Push
{Supply] Part Info SWBD. Supply - Browse Part Supply Info
[Update] Update - Update Part Supply Info
[Report] Report M - Part Supply Info Reports Admin
[Retum] Return to Main M - Returns to Main Admin Menu

Part Report SWBD - Submenu for Part Info Menu
RECORD SOURCE: None

BUTTONS: On Push
[Not on Hand] Part Report SWBD. Not On Hand - Lists Parts Not in Stock
[On Order] On Order - Lists Parts/UDs on order
[Under Stock]) Under Stock - Lists Parts/UDs under allowance
[Previous]) Retum to Prev - Returns to Part Info Menu
{Return] Return to Main - Retumns to Main Menu

Part Report SWBD M - Submenu for Part Info Menu Admin
RECORD SOURCE: None

BUTTONS: On Push
[System] Part Report SWBD. System M - Lists Parts/UDs in system
[Previous] Retum to Prev - Returns to Admin Part Info Menu

[Retumn} Return to Main - Returns to Main Admin Menn

157

Part Supply Info - Allows update to Part Supply info except Part#
RECORD SOURCE: PART

BUTTONS: On Push
[More] Part Macros. More Parts - Brings up another Part record
[Cancel] Cancel2 - Cancels and exits
[Issue] Open Issue - Opens the Parts Issued form
(Order] Open Order - Opens the Parts Ordered form
[Receive] Open Receive - Opens the Parts Received form

Part Supply Info Browse - Allows browse of part supply info for a part# from list
RECORD SOURCE: Get Supply Info (query)
BUTTONS: On Push
[Return] Part Macros. More Parts Test - returns to previous screen

Part Supply Info Test - Allows browse of part supply info for a part# from list
RECORD SOURCE: Get Supply Info (query)

BUTTONS: On Push
[Return] Part Macros. More Parts Test - returns to previous screen
Parts Issued
RECORD SOURCE: None
BUTTONS: On Push
[Update] Part Macros. Issue Update - Updates the number of parts on hand
[Cancel] Issue Cancel - Cancel and retum to previous form
Parts Ordered
RECORD SOURCE: None
BUTTONS: On Push
[Update] Part Macros. Order Update - Updates number parts on order
[Cancel] Order Cancel - Cancel and return to previous form
Parts Received
RECORD SOURCE: None
BUTTONS: On Push
[Update} Part Macros. Receive Update - Updates number parts on order
and parts on hand
[Cancel] Receive Cancel
Part Supply Info Test
RECORD SOURCE: Get Supply Info (query)
BUTTONS: On Push
[Retumn] Part Macros. More Parts Test - Returns to prev screen
SPECIAL CHARACTERISTICS:

Before Update: Clear Record
On Update: Clear Record
On Close: Clear Record

158

Part# Input
RECORD SOURCE: None

BUTTONS: On Push
[Cancel] Part Macros. Cancel - cancel and retum to previous screen
[Locate] Locate Parts - Gets another Part#

Part# Input Browse

RECORD SOURCE: Get Supply Info (query)

BUTTONS: On Push
[Cancel] Part Macrog. Cancel Test - Cancel and returns to prev screen
[Locate] Locate Parts Test - Gets another Part#

SPECIAL CHARACTERISTICS:

COMBO BOX:
Control Source: Part#
Row Source Type: Table/Query
Row Source: Get Supply Info (query)

Part# Input Test
RECORD SOURCE: Get Supply Info (query)
BUTTONS: On Push
[Cancel] Part Macros. Cancel Test - Cancel and retumn to prev screen
[Locate] Locate Parts Test - Locates another Part#
SPECIAL CHARACTERISTICS:

On Close: Clear Record

Select Change2 - Select Change Type Menu
RECORD SOURCE: None

BUTTONS: On Push
[ByNode#] Update Macros. Select Node U - Allow changes by Node#
By UD#) Select UD - allows changes by UD#
[Return) Select Cancel2 - Cancel and return to prev menu

Select Change2 M - Select Change Type Menu Admin
RECORD SOURCE: None

BUTTONS: On Push
{(By Node#] Update Macros. Select Node M - Allow changes by Node#
[By UD#] Select UD - allows changes by UD#
[Retum] Select Cancel2 - Cancel and retum to prev menu
UD Change
RECORD SOURCE: REPLACEMENT
BUTTONS: On Push

[Cancel] Update Magros. Cancel UD Change - Cancels change
[Change UD#] Change UD3 - Process for Changing UD#

159

UD¥ Input - Allows UD# for update of Replacement info by UD#
RECORD SOURCE: None

BUTTONS: On Push
[Cancel] Update Macros. Exit UD - Cancel change return to prev screen
[Locate] Find UD2 - Locate Replacement record for a UD#

Usage SWBD - Allows user to record and report on usage history (functions not implemented)
RECORD SOURCE: None

BUTTONS: On Push
[Enter} Usage SWBD. Enter - Enter usage info
[Retrieve] Retrieve - retrieve usage info ad hoc
[Annual] Annual Report - Produce formatted report
[Return] Retum to Main - Retumns to Main User Menu

5. MACROS AND ARGUMENTS

AutoExec OpenForm: MK92 Main Switchboard - User
MK92 Main - U. ARGUMENTS
Open Parts OpenForm: Form: Part Info SWBD
Open Usage OpenForm: Form: Usage SWBD
Open DB Maint - U OpenForm: Form: DB Maint SWBD - U
Exit Close: Form: MK92 Main Switchboard - User
Part Info SWBD.
Supply OpenForm: Form:
Update OpenForm: Form:
Report OpenForm Form:
Return to Main Close: Part Info SWBD
Close: DB Maint SWBD - U
OpenForm: MK92 Main - U
Part Report SWBD.
Not on Hand OpenReport: Report: R-Parts Not On Hand
On Order OpenForm: Not Implemented
Under Stock OpenForm: Not Implemented
Retumn to Prev Close: Part Report SWBD
OpenForm. Part Info SWBD
Return to Main Close: Part Report SWBD
Close: Part Info SWBD

160

Usage SWBD
Enter
Retrieve
Annual Report
Return to Main

DB Maint SWBD - U
Ckt Card

Help Info

Part Info

Return to Main

Close NI
Warning Off
Warning On

Part Macros
Find Parts

Locate Parts

More Parts

More Parts Test

Locate Parts Test

Cancel Test
Cancel2 Test

OpenForm:
OpenForm:
OpenForm:

Close:

OpenForm:
OpenForm:
OpenForm:
OpenForm:
Close:
Close:

SetWarning

SetWaming

OpenForm:
SetValue:

OpenForm:

Close:
SetValue:
Close:
OpenForm:
SetValue:
Close:
SetValue:
Close:
Close:
Close:
OpenForm:
SetValue:

OpenForm:

Close:
Close:
Close:

Form: Not Implemented
Form: Not Implemented
Form: Not Implemented
Form: Usage SWBD

Form: Select Change (False)
Form: Select Change2
Form: Not Implemented
Form: Not Implemented
Form: DB Maint SWBD - U
Form: Not Implemented

off

on

Form: Part Supply Info Test

Visible: No

Form: Part Supply Info

Where Condition: Part# = Forms!
[Part# Input]![Part#]

Form: Part Supply Info

Forms!{Part# Input]![Part#] / Null

Form: Part# Input

Form: Part# Input

Forms![Part# Input]![Part#] / Null

Form: Part# Input

Forms![Part# Input]![Part#] / Null

Form: Part Supply Info

Form: Part# Input

Form: Part Supply Info Test

Form: Part# Input Test (Read Only)

Visible/No

Form: Part Supply Info Test

Where Condition: Part# = Forms!

[Part Input Test]![Part#]

Form: Part# Input Test

Form: Part Supply Info Test

Form: Part# Input Test

Finish

Open Order
Open Issue
Open Receive
Issue Update
Issue Cancel
Order Update
Order Cancel
Receive Update
Receive Cancel

Update Macro
Find Node

(uses Query)

Find Node2

More

Save

Close:

OpenForm:

Close:

OpenForm:

SetValue:

OpenForm:

SetValue:

OpenForm:

SetValue:
RunCode:
Close:
RunCode:
Close:
RunCode:
Close:

SetValue:

OpenForm:

SetValue:

OpenForm:

RunCode:
Close:
SetValue:
Close:

OpenForm:

SetValue:
Close:

OpenForm:
OpenForm:

SetValue:
Close:
Close:
SetValue:
Close:
Close:
Close:
Close:
Close:

162

Form: Part Supply Info Test

Form: Part# Input Test (Read Only)
Form: Part# Input Test

Form: Parts Ordered

Forms![Parts Ordered]!{OrderAmt} / 0
Form: Parts Issued

Forms![Parts Issued]![IssueAmt] / 0
Form: Parts Received

Forms![Parts Received]![ReceiveAmt})/ 0
IssueParts()

Form: Parts Issued
OrderParts()

Form: Parts Ordered
ReceiveParts()

Form: Parts Received

Visible/NO

Form: 1Update Node-Repl (Test)

Where Condition: Node#=Forms!
[Node# Input]![Node#]

Visible/NO

Form: 1Update Node-Repl

Where Condition: Node#=Forms!
[Node# Input2]![Node#]

CheckEmptyNode()

Form: 1Update Node-Repl

Forms![Node# Input2]![Node#] / Null

Form: Node# Input2

Form: Node# Input2

Forms![Node# Input2]![Node#] / Null

Form: Node# Input2

Form: Select Change (False)

Form: Select Change2

Forms![Node# Input2]!{Node#] / Null

Form: 1Update Node-Repl

Form: Node# Input2

Forms![Node# Input2}![Node#] / Null

Form: 1Update Node-Repl

Form: Node# Input2

Form: Node# Input Test

Form: Select Change (False)

Form: Select Change?2

Clear
Change Node

Change Node2

Change Node3

Reset Node#

Not Implemented
Change UD

Change UD3

Find UD2

Exit UD

SendKeys:
OpenForm:

Echo -

RunCode:
RunCode:
Close:
Echo -

RunCode:
RunCode:
Close:

OpenForm:

Close:
SetValue:
OpenForm:
Close:

OpenForm:

Echo

RunCode:
RunCode:
Close:

OpenForm:

Close:
SetValue:
OpenForm:

RunCode:
Set Value:
Close:
Close:
OpenForm:
OpenForm:

163

{Esc} / Yes

Form: Node Change

Where Condition: [Node#}=Forms!
[1Update Node-Repl]![Node#]

Ooff

"Getting Node Informatiom"

AskUpdateNode ()

UpdateRelatedFields ()

Form: Node Change

Off

"Getting Circuit Card Information”

AskUpdateNode () (False)

UpdateRelatedNode ()

Form: 1Update Node-Repl

Form: 1Update Node-Repl

Where Condition: [Node#] = Forms!
[Node Change]![NewNode]

Form: Node Change

(doesn't work)

Form: Not Implemented

Form: 1Update Node-Rep! (False)

Form: UD Change

Where Condition: {UD#]=Forms!
[1Update NR-UD]![UD#]

/ Off

"Getting Replacement Information..."

AskUpdateUD () (False)

UpdateRelatedUD ()

Form: 1Update UD-NR

Form: 1Update Node-Repl!

Where Condition: [Node#}=Forms!
[UD Change]![NewUD]

Form: UD Change

Visible /NO (False)

Form: 1Update NR-UD

Where Condition: [UD#]=Forms!
[UD# Input]![UD#]

CheckEmptyUD ()

Forms![UD# Input]![UD#] / Null

Form: 1Update NR-UD

Form: UD# Input

Form: Select Change (False)

Form: Select Change2

Select Node

Select UD

Select Std

Select Cancel
Cancel Node Change
Cancel UD Change

Select Cancel2
More UD

Close:
SetValue:

OpenForm:

Close:
SetValue:

OpenForm:

Close:
SetValue:

OpenForm:

Close:
Close:
SendKeys:
Close:
SendKeys:
Close:
Close:
SetValue:
Close:

OpenForm:

Form: Select Change (False)
Visible / No

Form: Node# Input2

Form: Select Change (False)
Visible / No

Form: UD# Input

Form: Select Change (False)
Visible / No

Form: Node# Input2

Form: Select Change

Form: Node Change

{Esc}/ Yes

Form: UD Change

{Esc} / Yes

Form: Select Change2
Form: 1Update NR-UD

Forms![UD# Input}![UD#] / Null

Form: UD# Input
Form: UD# Input

6. APPLICATION ACCESS BASIC MODULES

UPDATES
{Declarations)

Option Compare Database "Use database order for string comparison

Dim UpdateUD, UpdateNode
Dim OIdUD, OldNode, NewUD, NewNode, NodeX

Dim MK92 As Database
Dim wiD%

Function AskUpdateNode ()

OldNode = Forms![Node Change]![Node#]
NewNode = Forms![Node Change]![NewNode]

UpdateNode = False

If MsgBox("Are you sure you want to change " & OldNode & " to " & NewNode &

*7",292) = 6 Then
UpdateNode = True
End If

If UpdateNode = False Then

164

NewNode = Null
End If
End Function

Function AskUpdateUD ()

OIdUD = Forms![UD Change]![UD#]
NewUD = Forms![UD Change]![NewUD]
UpdateUD = False

If MsgBox("Are you sure you want to change " & OldUD & " to * & NewUD & "?*,
292) =6 Then
UpdateUD = True
End If

End Function

Function UpdateRelatedNode)
' Changes UD# in related records in all tables

' Changes NODE# in related records in all tables
' Written S.Talley 1/10/93

OldNode = Forms![Node Change]![Node#]
NewNode = Forms![Node Change]![NewNode]
NodeX = NewNode

Set MK92 = CurrentDB()

Dim Node As Dynaset, NodeRepl As Dynaset, Replacement As Dynaset
Set Node = MK92.CreateDynaset("NODE")

Set NodeRepl = MK92.CreateDynaset("NODE-REPL")

Set Replacement = MK92.CreateDynaset("REPLACEMENT")

If MsgBox("Are you sure you want to change " & OldNode & " to " & NewNode & "?*,
292) =6 Then
Criteria = "[Node#] =" & NewNode & ™"
Node FindFirst Criteria
If Not Node. Nomatch Then
MsgBox (NewNode & " is already in use as an Node#. Please enter another Node#")

Exit Function
End If

DoCmd RunMacro "Warning Off"

165

DoCmd RunSQL *SELECT * INTO TempNode FROM NODE WHERE [Node#]
= Forms![Node Change]![Node#];"

DoCmd RunSQL "UPDATE TempNode SET [Node#] = Forms![Node
Change}![NewNode];"

DoCmd RunSQL "INSERT Into Node SELECT * FROM TempNode;"

DoCmd RunSQL "DELETE * FROM TempNode WHERE [Node#] = Forms![Node
Change]![Node#],"

Criteria = “[Node#] =" & OldNode & "

NodeRepl FindFirst Criteria
If Not NodeRepl.Nomatch Then
Do While NodeRepl.[Node#] = OldNode
NodeRepl Edit
NodeRepl.[Node#] = NewNode
NodeRepl.Update
NodeRepl.FindNext Criteria
Loop
End If

Node FindFirst Criteria

Node Delete

Criteria = "[Node#] =" & NewNode & "™

Node FindFirst Criteria
Else

Forms![Node Change)![NewNode] = Forms![Node Change]![Node#]
End If

DoCmd RunMacro "Warning On"
End Function
jon N

NodeX = Forms!{1Update Node-Repl]![Node#]

If IsNull(NodeX) Then
MsgBox ("No matching node found (or No Node# entered)")
DoCmd RunMacro "Update Macros. More"

End If

End Function
Function CheckEmptyUD ()

166

UDX = Forms![1Update NR-UD]![UD#]

If IsNull(UDX) Then
MsgBox ("No matching UD# found (or No UD# entered)")
DoCmd RunMacro "Update Macros.More UD"

End If

End Function

Function teRelated
' Changes UD# in related records in all tables
' Written S.Talley 1/10/93

OIldUD = Forms![UD Change]![UD#]
NewUD = Forms![UL Change]![NewUD]

Set MK92 = CurrentDB()

Dim Node As Dynaset, NodeRepl As Dynaset, Replacement As Dynaset
Set Node = MK92.CreateDynaset("NODE")

Set NodeRepl = MK92.CreateDynaset("NODE-REPL")

Set Replacement = MK92.CreateDynaset("REPLACEMENT")

' KUpdateNode = True Then
If MsgBox("Are you sure you want to change " & OldUD & " to " & NewUD & "?", 292)
= 6 Then
Criteria = *[UD#] =" & NewUD & ""
Replacement FindFirst Criteria
If Not Replacement.Nomatch Then
MsgBox (NewUD & " is already in use as an UD#. Please enter another UD#")
Exit Function
End If

DoCmd RunMacro "Warning Off"

DoCmd RunSQL "SELECT * INTO TempReplacement FROM REPLACEMENT
WHERE [UD#] = Forms![UD Change]!{[UD#];"

DoCmd RunSQL "UPDATE TempReplacer 1t SET [UD#] = Forms![UD
Change]![NewUD],"

DoCmd RnnSQL "INSERT Into Replacement SELECT * FROM
TempReplacem

DoCmd RunSQL "DELETE * FROM TempReplacement WHERE [UD#] =
Forms![UD Change]![UD#];"

Criteria = "[UD#] =" & OldUD & ™"

167

NodeRepl FindFirst Criteria
If Not NodeRepl. Nomatch Then
Do While NodeRepl.[UD#] = OldUD
NodeRepl Edit
NodeRepl.[UD#] = NewUD
NodeRepl.Update
NodeRepl FindNext Criteria
Loop
End If
Replacement FindFirst Criteria
Replacement.Delete
Criteria = "[UD#] =" & NewUD & ™"
Replacement.FindFirst Criteria
Else
Forms![UD Change]![NewUD] = Forms![UD Change]![UD#]
End If ‘

DoCmd RunMacro "Warning On"
End Function

SUPPLY

(Declarations)
Option Compare Database 'Use database order for string comparisons

Dim NewOrder, OldOrder As Integer

Dim OrderAmt

Dim MK92 As Database

Dim NewlIssue, OnHand, OldIssue, NewOnHand As Integer
Dim IssueAmt

Dim NewReceive, OldReceive As Integer

Dim ReceiveAmt

Function IssueParts ()

OnHand = Forms![Part Supply Info]![Parts on Hand]
IssueAmt = Forms![Parts Issued]![IssueAmt]
CheckNumber = True

CheckPositive = True

'Check to see if IssueAmt is an integer
If (Not IsNumeric(IssueAmt)) Then

168

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False

DoCmd GoToControl "IssueAmt"
End If

If IssueAmt is a number, then check to see if it's positive
If CheckNumber = True Then
If IssueAmt < O Then
MsgBox (*Amount entered must be a positive number. Delete entry and try again or
cancel. (2)")
CheckPositive = False
DoCmd GoToControl "IssueAmt"
End If
End If
If (CheckPositive = True) And (CheckNumber = True) Then

NewOnHand = OnHand - ReceiveAmt
' Check to see if amt on hand (NewOnHand) < 0, if so, sent message and don't update
If NewOnHand < 0 Then
MsgBox ("Amount issued is more than that on hand. Check part supplies and
correct entry.")
Else
Forms![Part Supply Info]![Parts on Hand] = NewOnHand
End If
DoCmd Close

Else
Forms![Parts Issued]!IssueAmt = 0

End If
End Function

Function OrderParts ()

OldOrder = Forms![Part Supply Info]![Parts on Order]
OrderAmt = Forms![Parts Ordered]![OrderAmt]
CheckNumber = True

CheckPositive = True

‘Check to see if OrderAmt is an integer
If (Not IsNumeric(OrderAmt)) Then

169

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False

DoCmd GoToControl "OrderAmt"
End If

If OrderAmt is a number, then check to see if it's positive
If CheckNumber = True Then
If OrderAmt < 0 Then
MsgBox ("Amount eatered must be a positive number. Delete entry and try again or
cancel. (2)")
CheckPositive = False
DoCmd GoToControl "OrderAmt”
End If
End If
If (CheckPositive = True) And (CheckNumber = True) Then

NewOrder = OldOrder + OrderAmt
Forms![Part Supply Info]![Parts on Order] = NewOrder
DoCmd Close

Else

Forms!([Parts Ordered]!OrderAmt =0
End If
End Function

Function ReceiveParts ()

OnHand = Forms![Part Supply Info]![Parts on Hand]
OldOrder = Forms![Part Supply Info]![Parts on Order]
ReceiveAmt = Forms![Parts Received}![ReceiveAmt]
CheckNumber = True
CheckPositive = True
'Check to see if ReceiveAmt is an integer
If (Not IsNumeric(ReceiveAmt)) Then

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False

DoCmd GoToControl "ReceiveAmt"
End If

If ReceiveAmt is a number, then check to see if it's positive
If CheckNumber = True Then

170

If ReceiveAmt < 0 Then
MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel. (2)")
CheckPositive = False
DoCmd GoToControl "ReceiveAmt"
End If
End If
If (CheckPositive = True) And (CheckNumber = True) Then
' Update Amt on Hand (Add Recived to On Hand)
NewOnHand = OnHand + ReceiveAmt
' Check to see if amt on hand (NewOnHand) < 0, if so, sent message and don't update
If NewOnHand < 0 Then
MsgBox ("Amount on hand is less than zero. Check part supplies and correct
entry.")
Else
' Update Amt on Order (Subtract Received to On Hand)
NewOrder = OldOrder - ReceiveAmt
' Check to see if this is < 0, send message if true
If NewOrder < 0 Then
MsgBox ("Amount on order has been calculated as less than zero. Check
outstanding orders and correct entry. (Value has been reset to 0).")
NewOrder =0
End If
Forms![Part Supply Info]![Parts on Hand] = NewOnHand
Forms![Part Supply Info]![Parts on Order] = NewOrder
End If
DoCmd Close
Else
Forms![Parts Received]!ReceiveAmt = 0
End If
End Function

nction mptyPart

PartX = Forms![Part Supply Info]![Part#]
If IsNull(PartX) Then
wild = MsgBox(*"No matching Part # found (or No Part # entered)", 64, "No Match
Found")

DoCmd RunMacro "Part Macros.More Parts"

End If
End Function

171

APPENDIX F. DDE INTERFACE DOCUMENTATION

A. ACCESS BASIC LANGUAGE ELEMENTS FOR DDE

Access Basic
Language Element

DDEQ

DDElnitiate()

DDERequest()

DDESend()

DDEExecute(Q

DDEPoke()

DDETerminate()

DDETerminateAllQ

Element
Type

Function

Statement

(Perschke, 1992, p. 244)

Purpose

Initiates a DDE process with another
application and returns the requested
information

Initiates a DDE and conversation with
another application

Requests an item from a DDE server
application

Initiates a DDE process with another
application and sends data to the
specified item in that application

Sends a command to another
application over an established DDE
channel

Sends data to another application over
an established channel

Closes a specified DDE conversation
channel

Closes all open DDE conversation
channels

172

Available From

Access Basic form
controls
Access Basic form
controls

Record Source
property of certain

Access Basic and
form controls

Access Basic and
form controls
Access Basic and
form controls
Access Basic and
form controls

P

B. ADEPT FUNCTIONS FOR DDE

Function Description
Advise Asks a server program to send a data item to
Adept each time it changes

CloseAllChannels Closes all open channels

CloseChannels Closes an open channel

Execute Sends an executable command to a server
program

Notify Asks a server program to notify Adept each
time a data item changes

OpenChannel Opens a channel to a server program

Poke Sends a data item to a server program

Request Asks a server program to send a data item to
Adept

Unadvise Asks a server program to stop sending a data
item to Adept each time it changes

(Symbologic Corporation, 1991,

173

C. ADEPT AND ACCESS APPLICATION INTERFACE PROCESSES
1. Adept Expert System Interface Node And Scripts
a. Interface Node

Test Mk92 Start___

display C| e

Custom Inteface Node
Figure F-1

174

b. Interface Node Scripts

Partl:
%2 =%,
Node=%2,

// This opens a channel to Access and runs a Macro - current one is called "1TableOnly",
// which takes the node number (already stored for testing) and runs a "make table

/' query”, which gets the correct data for that node from the database - variable Node
/I is not used for anything at this time

AccCall = OpenChannel("MK92T2","D:\mk92db2\MK92T2 MDB");
Execute (AccCall, *[1TableOnly]");
CloseChannel(AccCall)

PartII:

// Once the table is created, this code opens a channel and pulls it from Access

/l The Open Channel statement is dependent on the path and must be correct for
/l the database being used

AccTalk2=OpenChannel("MK92T2","d:\Mk92db2\mk92t2.mdb; TABLE NEWTX"),
// These variables are used to determine how many rows (records) exist

Rows=1;

Row2="999";

Row3="999";

Row4="999";

row=0;

// These statements get the value of the records and check to see how many
// records exist

Request(AccTalk2,"FirstRow" Row1l),

Request(AccTalk2, "NextRow",Row2);

Request(AccTalk2, "NextRow" Row3);

Request(AccTalk2, "NextRow" Row4);

If Row4 == "999" then Rows=3 else Rows=4;

If Row3 == "999" then Rows=2;

If Row2 == "999" then Rows=1,

// These statements assign values of Records to variables to break into fields

// For empty records this program substitutes the following statement

//' RowX="<CTRL><TAB> <CTRL><TAB> <CTRL><TAB> <CTRL><TAB>
// <CTRL><TAB>*" - this eliminates the <NO VALUE> in the display, which

175

/Il otherwise occurs if a RowX (or any other row) does not really exist (S combinations
// of <CTRL><TAB> and space fill the empty fields correcly with blank fields

if (Rows==4) then
{
RowA=Row];
RowB=Row2;
RowC=Row3;
RowD=Row4;
}
else
if (Rows==3) then
{
RowA=Rowl;
RowB=Row2;
RowC=Row3;
RowD=" b
}
else
if (Rows==2) then
{
RowA=Rowl;
RowB=Row2;
RowC=" *n
RowD=" *n.
}
else
if (Rows=1) then
{
RowA=Rowl;
RowB=" .
Ro ¥ *u;
RowD=" e
I
// these statements take the value of each field and assign to variables for 4 rows
until (row =4) do

176

Length=FindText(RowA,"*"),
Row1Info=GetSubText(RowA, 1,Length);
RO=GetSubText(RowA, 1,Length);

|5

If (row = 2) then

{

Length=FindText(RowB,"*"),
Row1Info=GetSubText(RowB,1,Length);
RO=GetSubText(RowB, 1,Length);

b
If (row = 3) then

{

Length=FindText(RowC,"*"),
Row1Info=GetSubText(RowC,1,Length);
RO=GetSubText(RowC,1,Length);

8

If (row == 4) then

{

Length=FindText(RowD,"*");
Row1Info=GetSubText(RowD,1,Length);
RO=GetSubText(RowD,1,Length);

|

// This starts the loop looking at fields
do

{

col=col+1;

LO=FindText(RO," ")
FO=GetSubText(R0,1,L0-1);
LX=L0+LX,
RO=GetSubText(R0,L0+1 Length-LX);

if col==1 then if (row==1) then (F11=FO0) else if (row==2) then (F21=F0) else if (row=23)
then (F31=F0) else (F41=F0);

if (col==2) then if (row=1) then (F12=F0) else if (row==2) then (F22=F0) else if
(row==3) then (F32=FO0) else (F42=F0),

177

if (col==3) then if (row==1) then (F13=F0) else if (row=—=2) then (F23=FO0) else if
(row==3) then (F33=FO0) else (F43=F0),

if (col==4) then if (row==1) then (F14=FO0) else if (row==2) then (F24=F0) else if
(row==3) then (F34=FO0) else (F44=F0);

if (col==5) then if (row==1) then (F15=F0) else if (row=2) then (F25=F0) else if
(row=23) then (F35=F0) else (F45=F0)

}
while col<nx;

¥
CloseChannel(AccTalk2)

178

¢. Adept Display of Part Information

& Part Replacement Info:

SUDE: 441JAIFTI-AN2

‘ 5381406-)
i{Altemate Location:

o NONE

N Documentation Reference:
- SF0-13-20

o
[Notes:
3
:

Hupe: 401 JA3FI-AN3
A Pant: 53813901
Alternate Location:

Adept Display of Part Information from Database
Figure F-2

2. Database Application Procedures and Macros
Macro:
1NewTxQue

Actions: OpenQuery: Query: 1XQ
1TestDDENodeReq

Actions: RunCode: Function: GetNode()

179

Actions: RunCode: Function: GetNode()
RunCode: Function: MakeTable()

Actions: RunCode: Function: MakeTable()

Actions: SetWarning: On

Actions: SetWamning: Off

Modules:
Procedure DDE
Declarations

Option Compare Database ‘Use database order for string comparisons

Dim NodeNum
Dim MK92 As Database

Function Geth:fo ()
DoCmd RunMacro "1MakeTable"
End Function
Function GetNode (
ChannelNum = DDElnitiate("Adept"”, "Test92")

NodeNum = DDERequest(ChannelNum, "VARIABLE Node")
Dim db As Database, T As Table

Set db = CurrentDB()

Set T = db.OpenTable("INX")
T.MoveFirst

T.Delete

180

T.AddNew

T![Node#] = NodeNum
T.Update

T.Close

DDETerminate Channe/Num

End Function

Function MakeTable O

DoCmd RunMacro "Waming Off"

DoCmd RunMacro ° I NewTx Query”
DoCmd RunMacro "Warning On*

End Punction

NOTE: in this finction, statements which begin with ' are not operational (comment lines)
Exnction MaksTabieXX O

»
»
.
’
.
»
’

DoCmd RunMacro “Waming Off"
Set MK92 = CurretDB()

Dim NewT As Table

Set NewT = MK92 OpenTable("NEWTX")
NewT MoveFirst
Do Until NewT EOF

NewT Delete

NewT MoveNext

Loop
NewT .Close

' THIS DIDN'T WORK

Dim NX As Dynaset, NewTable As Dynaset, NodeRepl As Dynaset, REPLACEMENT

DoCmd RuaSQL “SELECT * INTO TempTable FROM [NODE-REPL],
REPLACEMENT, INX, REPLACEMENT INNER JOIN [NODE-REPL] ON

181

REPLACEMENT.[UD#] = [NODE-REPL].[UD#}],INX INNER JOIN [NODE-
REPL) ON [INX].[Node#] = [NODE-REPL],[Node#],"

' DoCmd RunSQL "UPDATE TempTable SET [Node#] = Forms![Node
Change]![NewNode];"

' DoCmd RunSQL "INSERT Into NEWTX SELECT * FROM TempTable;"

' DoCmd RunSQL "DELETE * FROM TempNode WHERE [Node#) =
Forms![Node Change}![Node#];*

' THIS DIDN'T WORK EITHER

' DoCmd RunSQL "SELECT DISTINCTROW REPLACEMENT.®* INTO NEWTX
FROM [NODE-REPL), REPLACEMENT, INX, REPLACEMENT INNER
JOIN {NODE-REPL} ON REPLACEMENT [UD#] = [NODE-
REPL).[UD#¥], INX INNER JOIN [NODE-REPL] ON [INX].[Node#] = [NODE-
REPL] [Node#),®

' DoCmd RunSQL “SELECT DISTINCTROW * INTO NEWTX FROM [NODE-
REPL}, REPLACEMENT, INX, REPLACEMENT INNER JOIN [NODE-
REPL] ON REPLACEMENT.[UDW¥] = [NODE-REPL].[UD#],INX INNER
JOIN (NODE-REPL] ON {INX]) {Node#) = [NODE-REPL] [Node#],"

' DoCmd RunSQL "SELECT * INTO NEWTX FROM [NODE-REPL]},
REPLACEMENT, INX, REPLACEMENT INNER JOIN [NODE-REPL] ON
REPLACEMENT .[UD¥] = [NODE-REPL].[UD#], INX INNER JOIN [NODE-
REPL] ON [INX].(Node#] = ([NODE-REPL],(Node#];"

DoCmd RunMacro "Warning On®
End Function

LIST OF REFERENCES
Campbell, T. and Hudnall, M., Ed., "Test Lab," Compute, pp. 16-36, August 1993.
Coflee, P, “Super Databases," PC Computing, pp. 270-297, October 1993.

Elmasri, R and Navathe, S., Findamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., 1989.

Jennings, R., AccessTM Developer's Guide, SAMS Publishing, 1993
Jones, E., Ready-Made Access Applications, Windcrest/McGraw-Hill, 1994.

Kroenke, D. M., Database Processing: fundamentals, design, implementation, Macmillan
Publishing Company, 1992.

Microsoft Corporation, Microsoft Access Language Reference, Microsoft Press, 1992,
Microsoft Corporation, Microsoft Access User's Guide, Microsoft Press, 1992,

Perschke, S. and Liczbanski, M., Access for Windows Power Programoming, Que
Corporation, 1993.

Smith, D. C., Development of a Maintenance advisor Expert System for the MK 92 MOD
2 Fire Control System: FC-] Designation - TIme, Range, Bearing FC-1
Acquisition, FC-1 Track - Range, Bearing, and FC-2 Designation - Thme, Range,
Bearing, FC-2 Acquisition, FC-2 Track - Range, Bearing, and FC-4 and FC-5,
l‘ml 's Thesis. Naval P huate School. M _ California, S :

smacg;clwm Symbologic Adept™ Raference, Symbologic Corporation,

Whitten, J. L., Bentiey, L. D., and Barlow, V. M., Systems Amalysis and Design Methods,
Richard D. Irwin, Inc., 1989.

183

BIBLIOGRAPHY

Campbell, T. and Hudnall, M., Ed., "Test Lab," Compute, pp. 16-36, August 1993
Coffee, P, "Super Databases,” PC Computing, pp. 270-297, October 1993.

Elmasri R and Navathe, S., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., 1989.

Jennings, R, AccessTM Developer's Guide, SAMS Publishing, 1993.
Jones, E., Ready-Made Access Applications, WindcrestYMcGraw-Hill, 1994.

Kroenke, D. M., Database Processing: fundamentals, design, implementation, Macmillan
Publishing Company, 1992.

Liskin, M., HELP! Microsoft Access, Ziff-Davis Press, 1993.

Microsoft Corporation, Microsoft Access Language Reference, Microsoft Press, 1992.

Microsoft Corporation, Microsoft Access User’s Guide, Microsoft Press, 1992.

Perschke, S. and Liczbanski, M., Access for Windows Power Programming, Que
Corporation, 1993.

Simpeon, A., Understanding Microsoft Access, Sybex, Inc., 1993.

Smith, D. C., Development of a Maintenance advisor Expert System for the MK 92 MOD
2 Fire Control System: FC-1 Designation - TTme, Range, Bearing FC-1
Acquisition, FC-1 Track - Range, Bearing, and FC-2 Designation - Time, Range,
Bearing, FC-2 Acquisition, FC-2 Track - Range, Bearing, and FC-4 and FC-5,
WMNMWMM.CMQ September

St. Valentine, C., Access Basic Cookbook, Addison-Wesiey Publishing Company, 1993.

Symbolt;gi;l(:apa:ﬁoo, Symbologic AdeptT™ Reference, Symbologic Corporation,

Viescas, J. L., MMAMTM, Microsoft Press, 1993.

Whitten, J. L., Bentley, L. D., and Barlow, V. M., Systems Analysis and Design Methods,
Richard D. Irwin, Inc., 1989.

184

INITIAL DISTRIBUTION LIST

1. Defense Tecnical Information Center
Cameron Station
Alexandria, VA 22304-6154

2. Library, Code 052
Naval Postgraduate School
Monterey, CA 93943-5000

3. Capt. O.H Perylll
Naval Sea Systems Command

Code 62Z, NC3, Room 8§W06
2531 Jefferson Davis Highway
Waskington, DC 22243-5160

4. Mr. Ed McGill
Naval Ses Systems Command
Code 62ZP, NC3, Room 8W06
2531 Jefferson Davis Highway
Washington, DC 22243-5160

5. FCC Stein
Naval Sea Systems Command
Code 62ZP, NC3, Room W06
2531 Jefferson Davis Highway
Washington, DC 22243-5160

6. CMDR AM. Joseph
Nsval Surface Warfare Center
Code 4A00
Port, Hueneme, CA 93043

7. Mr. Bill Campbell
Naval Surface Warfare Center
Code 4A32

Port, Hueneme, CA 93043

185

10.

11

12.

Mr. Henry Seto

Port Hueneme Division

Naval Surface Warfare Center
Code 4A32

Port Hueneme, CA 93043

Professor Magdi Kamel, Code AS/Ka
Naval Postgraduate School
Monterey, CA 94043

Professor Martin McCaffrey, Code AS/Mf
Naval Postgraduate School
Monterey, CA 93943-5000

LCDR Susan G. Talley
COMNAVFORKOREA
UNIT # 15250

APO AP 96205-0023

LT Janie Crawford, Code 37

Naval Postgraduate School
Moaterey, CA 93943-5000

186

